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We investigate the detailed nature of the ‘mixing transition’ through which turbulence
may develop in both homogeneous and stratified free shear layers. Our focus is
upon the fundamental role in transition, and in particular the associated ‘mixing’
(i.e. small-scale motions which lead to an irreversible increase in the total potential
energy of the flow) that is played by streamwise vortex streaks, which develop once
the primary and typically two-dimensional Kelvin–Helmholtz (KH) billow saturates
at finite amplitude.

Saturated KH billows are susceptible to a family of three-dimensional secondary in-
stabilities. In homogeneous fluid, secondary stability analyses predict that the stream-
wise vortex streaks originate through a ‘hyperbolic’ instability that is localized in the
vorticity braids that develop between billow cores. In sufficiently strongly stratified
fluid, the secondary instability mechanism is fundamentally different, and is associated
with convective destabilization of the statically unstable sublayers that are created as
the KH billows roll up.

We test the validity of these theoretical predictions by performing a sequence of
three-dimensional direct numerical simulations of shear layer evolution, with the
flow Reynolds number (defined on the basis of shear layer half-depth and half
the velocity difference) Re = 750, the Prandtl number of the fluid Pr = 1, and
the minimum gradient Richardson number Ri(0) varying between 0 and 0.1. These
simulations quantitatively verify the predictions of our stability analysis, both as to
the spanwise wavelength and the spatial localization of the streamwise vortex streaks.
We track the nonlinear amplification of these secondary coherent structures, and
investigate the nature of the process which actually triggers mixing. Both in stratified
and unstratified shear layers, the subsequent nonlinear amplification of the initially
localized streamwise vortex streaks is driven by the vertical shear in the evolving
mean flow. The two-dimensional flow associated with the primary KH billow plays
an essentially catalytic role. Vortex stretching causes the streamwise vortices to extend
beyond their initially localized regions, and leads eventually to a streamwise-aligned
collision between the streamwise vortices that are initially associated with adjacent
cores.

It is through this collision of neighbouring streamwise vortex streaks that a fi-
nal and violent finite-amplitude subcritical transition occurs in both stratified and
unstratified shear layers, which drives the mixing process. In a stratified flow with
appropriate initial characteristics, the irreversible small-scale mixing of the density
which is triggered by this transition leads to the development of a third layer within

† Present address: Department of Mechanical and Aerospace Engineering, University of Cali-
fornia, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA.



2 C. P. Caulfield and W. R. Peltier

the flow of relatively well-mixed fluid that is of an intermediate density, bounded by
narrow regions of strong density gradient.

1. Introduction
The spontaneous development of spatially incoherent turbulent motion within an

initially laminar fluid flow is a problem of fundamental importance in fluid dynamics
(see e.g. Bayly, Orszag & Herbert 1988) with applications in both the geophysical
sciences (see the reviews of Thorpe 1987 and Fernando 1991) and engineering (e.g.
Hussain 1983). Flows with a point of inflection in the initially laminar velocity profile
are known to be primarily unstable to a two-dimensional instability that is often
referred to as the ‘Kelvin–Helmholtz’, or KH instability (see Drazin & Reid 1981
for a thorough introduction). In this paper, we will consider the life cycle of four
particular examples of such flows, both with and without density variations, as they
undergo the transition to turbulence, by which we mean to imply a state characterized
by the proliferation of small-scale, uncorrelated motions.

As the KH instability develops to finite amplitude, the unstratified or homogeneous
mixing layer, which may be considered to constitute a strip of vorticity, rolls up
into an array of two-dimensional elliptical vortices, or ‘billows’. Brown & Roshko
(1974) experimentally verified the expected initial behaviour involving the largely
two-dimensional growth of coherent spanwise vortical structures separated by a
braid region of high strain. Though this circumstance is generic, experiments have
also revealed dislocations or significant spanwise variation in the primary spanwise
vortices that develop in wide channels (Browand & Prost-Domasky 1990; Nygaard
& Glezer 1990, 1991, 1994; Atsavapranee & Gharib 1997).

The primary KH vortices are not totally isolated from each other, but rather are
connected by a thin ‘braid’ of spanwise vorticity, as discussed by Corcos & Sherman
(1984). This thin braid of vorticity is a remnant of the initial spanwise vorticity of
the shear layer, and is embedded in a region of flow with open streamlines that are
locally hyperbolic, such that a stagnation point exists at the midpoint of the braid.
A typical distribution of spanwise vorticity for a fully-developed KH billow in an
unstratified flow is shown in figure 1(a).

When largely two-dimensional arrays of primary spanwise vortices develop in
mixing layers, the vortices themselves are known to be subject in turn to a wide
variety of secondary instabilities, both quasi-two-dimensional and inherently three-
dimensional in nature. Perhaps the most well-known of these is the subharmonic
pairing instability (see Winant & Browand 1974) in which pairs of the primary KH
vortices precess around each other and eventually merge to form a larger vortex.
However, experimental evidence from both unstratified and stratified shear layers
strongly suggests that the spontaneous appearance of initially coherent small-scale
three-dimensional motions is an essential precursor to the transition to fully-developed
disordered turbulent flow. In this paper we therefore intend to focus upon the origins
of three-dimensional structure within an initially two-dimensional KH billow so that
we may consider the processes of small-scale three-dimensionalization in isolation.

In unstratified shear layers, experiments have shown that it is the vorticity braids
that become the site of strong three-dimensional motions, that initially take the form
of streamwise vortex streaks, often referred to as rib vortices (see Hussain 1983 for a
review). These coherent rib vortices are precursory to the appearance of small-scale
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Figure 1. (a) Contours of spanwise vorticity in a fully-developed KH billow in an unstratified
shear flow, at a time when the perturbation has maximum amplitude. Compartmentalization of the
flow into core (dotted rectangle), eyelid (dashed rectangle) and braid regions (dot-dashed rectangle)
is also shown. (b) Contours of spanwise vorticity in a fully-developed KH billow in a flow with
Ri(0) = 0.05, at a time when the perturbation has maximum amplitude. Shading denotes regions
of static instability. The Reynolds number Re = 750 = Ud/ν, where U and d are half the velocity
difference and the shear half-depth respectively, and the Prandtl number Pr = ν/k = 1 where ν is
the kinematic viscosity and κ is the thermal diffusivity.

disordered motion and the transition to turbulence in homogeneous free shear layers,
and have been much studied both numerically and experimentally (see for example
Corcos & Lin 1984; Lin & Corcos 1984; Bernal & Roshko 1986; Metcalfe et al. 1987;
Lasheras, Cho & Maxworthy 1986; Lasheras & Choi 1988; Ashurst & Meiburg 1988;
Klaassen & Peltier 1989, 1991; Nygaard & Glezer 1991; Rogers & Moser 1992; Knio
& Ghoniem 1992; Smyth & Peltier 1994; Schowalter, Van Atta & Lasheras 1994;
Lesieur, Comte & Métais 1995; Potylitsin & Peltier 1998).

It is well-known that both the elliptical KH vortex core (see Pierrehumbert &
Widnall 1982; Cambon, Teissèdre & Jeandal 1985; Bayly 1986; Pierrehumbert 1986;
Landman & Saffman 1987; Klaassen & Peltier 1989; Waleffe 1990; Nygaard &
Glezer 1990, 1991; Smyth & Peltier 1994; Salhi, Cambon & Speziale 1997; Potylitsin
& Peltier 1998) and the hyperbolic braid region (Klaassen & Peltier 1991, henceforth
KP91; Smyth & Peltier 1994) are subject to distinct, fundamentally three-dimensional
secondary instabilities. Smyth & Peltier (1994) showed that the braid-centred ‘hyper-
bolic’ instability is predicted to have larger growth rate than the core-centred ‘elliptic’
instability provided the spanwise wavelength of the perturbation is sufficiently small.
One of the principal objectives of this paper is to clarify the initial growth mechanism
of the principal secondary instability of a homogeneous shear layer. We demonstrate
unequivocally that the development of three-dimensional motions in a primary KH
billow is dominated by the onset of a braid-centred hyperbolic instability, which is
fundamentally distinct from the ‘elliptical’ instability.

To distinguish between the braid-centred and core-centred instabilities, we consider
the spatial localization of the three-dimensional perturbations in detail. We find that it
is helpful to compartmentalize all perturbation quantities (in particular, appropriately
defined perturbation kinetic energies) into different bins, associated with the primary
billow core, the billow periphery (or ‘eyelid’) and the braid region, as shown in figure
1(a). For simplicity, we have chosen these bins to be rectangular, and defined them
in terms of the spanwise vorticity contours of a two-dimensional, unstratified shear
layer. The ‘core’ region was defined as the minimal rectangle containing fluid with
spanwise vorticity that is at least 70% of the maximum value within the flow. The
vertical extent of this region also defines the vertical extent of the ‘braid’ region. The
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‘eyelid’ region (of particular relevance in stratified flows) is defined as the rectangular
region which surrounds the 30% contour of spanwise vorticity. The braid region is
also rectangular, extending horizontally between the two edges of the eyelid region.

The natural question arises as to precisely how such three-dimensional structures
extract energy from the two-dimensional flow. Analogously with studies of boundary-
layer flows (Orszag & Patera 1983; Herbert 1988) we find that three-dimensional
motions in a mixing layer appear to grow initially by extracting energy directly from
the horizontally averaged mean flow. Although the presence of a two-dimensional
perturbation (i.e. the KH billow) is essential to the growth of the three-dimensional
perturbation, it largely plays a catalytic role (in the sense of there being little
energy transfer from the two-dimensional perturbation into the three-dimensional
perturbation) at least initially.

Having addressed the issues of initial development and subsequent growth of
three-dimensional perturbations of an unstratified shear layer, we will also seek to
understand how the actual transition to turbulence occurs within the free shear layer.
Ruelle & Takens (1971) conjectured on topological grounds that the generic pathway
to turbulence for a fluid flow is through the sequential onset of a finite (and small)
number of instabilities, an ansatz which is consistent with the experimental evidence
for a broad range of flows (see Swinney & Gollub 1981 for a review). Such a pathway
is particularly appealing for the unstratified mixing layer, especially if subharmonic
merging events or ‘pairing’ is delayed, or at least does not initiate immediately.
Then, the initially laminar flow is subject to the KH billow instability, which in turn
is subject to a secondary (three-dimensional) instability in the form of streamwise
vortices. Whether these vortices are themselves subject to a tertiary instability, or lead
directly to turbulent disordered motion within the flow is an important open question
which we also address in this paper.

It is well-known that the KH instability may occur in flows with statically stable
density distributions, provided the Richardson number Ri is less than 1

4
somewhere

within the flow (a result established for inviscid flows by Miles 1961 and Howard
1961) in which Ri is defined as

Ri(z) =
−g
ρ

∂ρ

∂z

/(
dV̄

dz

)2

, (1.1)

where ρ(z) and V̄ (z) are the background profiles of density and velocity respectively.
In figure 1(b), we show vorticity contours of a KH billow within a stratified shear
layer with initial midplane Richardson number equal to 0.05.

In his classic tilted tank experiments, Thorpe (1985, 1987) observed that stratified
mixing layers were also subject to a rolling up of the spanwise vorticity into distinct
KH billows. These vortices were in turn subject to a wide variety of secondary
instabilities. Subharmonic merging was still observed to occur in a largely two-
dimensional manner, although compared to unstratified shear flows, there is evidence
that the stratification suppresses merging somewhat (see Koop & Browand 1979;
Schowalter et al. 1994). Streamwise periodic structures were also observed, both in
the braid region (referred to as ‘tubes’ by Thorpe) and also around the periphery
of the KH billow cores, with an observed variation in their characteristic periodicity
with Re. Similar structures were also reported, and identified as vortices by Lawrence,
Browand & Redekopp (1991) and Schowalter et al. (1994).

Peltier, Hallé & Clark (1978) and Davis & Peltier (1979) have conjectured the
existence of an alternative process of three-dimensionalization in a stratified shear
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flow to that which governs the process in homogeneous fluid. During the process of
rolling up, a KH instability in a stratified flow advects the density field in such a
way as to induce convectively unstable layering of the density field in the regions
surrounding the vortex core (shown as shaded regions in figure 1b). A necessary
condition (Gallagher & Mercer 1965; Kelly 1967; Domaradzki & Metcalfe 1988;
Clever & Busse 1991) for such statically unstable regions to actually be unstable to
a convective-type instability is that the convection rolls be aligned with the direction
of the background shear, i.e. that the rolls have streamwise aligned vorticity within
the present context. Therefore, provided these statically unstable layers are sufficiently
deep, so that their associated Rayleigh number is sufficiently high (as specifically
discussed by Davis & Peltier 1979) streamwise vortical overturnings are expected
which scale with the depth of the deepest statically unstable layer (which is naturally
the one on the periphery of the primary billow core, in the ‘eyelid’ region shown
in figure 1). Klaassen & Peltier (1985a) (henceforth KP85) and KP91 considered
the secondary stability of such flows in detail at similar Reynolds numbers to those
attained by Thorpe in his experiments.

At finite amplitude, these overturnings develop into periodic arrays of streamwise
vortex tubes of alternating sign, with maximum amplitude around the periphery of
the vortex core. The characteristic spanwise wavelength of these convectively induced
streamwise vortices is significantly smaller than the streamwise wavelength of the
primary KH billows, and is slightly less than, though of the same order as, the spanwise
wavelength of the most unstable unstratified hyperbolic instability mode predicted
by secondary stability analysis. In our previously reported simulation (Caulfield
& Peltier 1994, see also Palmer, Fritts & Andreassen 1996; Cortesi, Yadigaroglau
& Bannerjee 1998), we observed that the dominant spanwise wavelength of the
numerically generated streamwise vortices agreed very well with the most unstable
mode determined from a stability analysis using the method of KP85 and KP91. For
the particular value of Re selected, transition to highly disordered motion occurred
rapidly after the onset of the secondary convective instability. Furthermore, the
appearance of streamwise vortices appeared to suppress the subharmonic pairing
instability.

In the context of our analyses of a stratified shear flow, we wish to identify
the primary mechanisms by which the flow becomes three-dimensionally unstable,
and the spatial region within which perturbations grow. In particular, we wish to
determine if the statically unstable regions around the periphery of the primary
vortex core are fundamental to the development of three-dimensional motions, as
predicted theoretically. We will also consider the way in which these motions evolve
and interact dynamically with the ambient stratification.

In § 2, we briefly discuss the characteristics of the numerical model and the various
energy budgets which we use in our analysis. In this section we describe the algorithm
(essentially that due to Winters et al. 1995) which we use to decompose the potential
energy P into two constituent parts, namely the ‘available’ potential energy PA
and the ‘background’ (or minimum) potential energy PB . In a dissipative flow at
finite Reynolds number, PB can increase due to mixing or diffusion (an irreversible
conversion from the internal energy of the fluid) while PA = P−PB is ‘available’ to
be converted into kinetic energy for motion.

In § 3, we describe the results obtained in a series of two-dimensional simulations
of stratified shear layers for four different values of the initial midplane Richardson
number Ri(0). Only through a detailed understanding of such two-dimensional flows
are we able to quantify the crucial effect of three-dimensionality on flow evolution.
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In § 4, we present the results of a secondary stability analysis (using the technique
developed in KP85 and KP91) and summarize the properties of the three-dimensional
instabilities which are possible candidates for control of the mixing transition, i.e. the
onset of significantly enhanced irreversible mixing due to small-scale disordered
motions.

Section 5 is devoted to a detailed discussion of the bulk characteristics of three-
dimensional simulations of stratified shear layers, with the same initial profiles as
employed in the two-dimensional analyses discussed in § 3. In particular, on the
basis of perturbation kinetic energy and available potential energy considerations,
we identify the dominant mechanisms of initial growth of three-dimensional motions
and compare the results with the theoretical predictions presented in § 4. Through a
careful analysis of flow energetics, we find that, over a range of Richardson numbers,
the density field plays a largely catalytic role in the finite-amplitude development of
three-dimensional perturbations. Perturbations in the density field trigger the onset of
three-dimensional motions, and determine the nucleation sites of streamwise vortices,
away from the braid region and around the periphery of the primary vortex core.
However, the primary mechanism for enhancement of the three-dimensional motions
is through shear extraction directly from the mean, background flow.

Our results demonstrate that there is also a close correspondence between the
unstratified and stratified flows in the final transition to disordered motion, this
transition being due to a subcritical finite-amplitude interaction between streamwise
vortices colliding in the braid region into which they have been stretched and advected
by the strain field induced by the mean flow in both cases. This final stage of the
transition is the one which initiates mixing and in the case of stratified flow we
observe an associated increase in the background potential energy of the system PB .
We use an appropriate representation of the mixing efficiency of a three-dimensional
stratified shear layer, i.e. the ratio of the (irreversible) increase of the potential energy
of the system to the work done on the fluid, which is closely related to that used in
shear-free experiments (see Linden 1979 and Fernando 1991 for reviews, and Park,
Whitehead & Gnanadeskian 1994). From our analyses we are able to infer that the
mixing induced by the breakdown of KH instabilities should lead naturally to the
development of a layered density profile, once the disordered motion has decayed.

In § 6, we present appropriate visualizations of the three-dimensional flow fields
and thus identify the spatial structure of the varying physical processes by which the
flows become disordered and finally mixed as Ri(0) changes. We provide a summary
of our conclusions in § 7.

2. Mathematical model
We consider a temporal shear layer, i.e. a flow which is statistically uniform in

space, and which evolves with time. We restrict our attention to incompressible
flows in which the density variations are sufficiently small so that the Boussinesq
approximation is valid. The initial background profiles of velocity and density will be
assumed to be, respectively,

V̄ (z, 0) = V0 tanh
z

d
, (2.1)

ρ̄(z, 0) = ρa − ρ0 tanh
Rz

d
, (2.2)

in which R is the ratio of the characteristic scale of velocity variation to the charac-
teristic scale of density variation. This choice of initial conditions, together with the
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coordinate system that we use (i.e. the x-coordinate axis is in the spanwise or cross-
stream direction, the y-coordinate axis is in the streamwise or along-stream direction
and the z-coordinate axis is in the vertical direction) means that the shear layer
constitutes a layer of negative spanwise vorticity. In these calculations, we chose the
experimentally realistic value of R = 1.1 (see Thorpe 1985, 1987; Caulfield, Yoshida
& Peltier 1996). For such a value of R, we know that the flow is primarily unstable
to the KH instability (see Smyth, Klaassen & Peltier 1988 for a full discussion). For
the profiles chosen, the initial Richardson number is a minimum at the midpoint of
the shear layer (i.e. at z = 0) with value

Ri(0) ≡ gRρ0d

ρaV
2
0

≡ RRi0, (2.3)

where Ri0 is the bulk Richardson number of the flow. Throughout this paper, we will
use Ri(0) as an appropriate measure of the importance of stratification within the
flow.

Using V0, ρ0 and d as characteristic velocity variation, density variation and length
scales, the governing equations of motion are

Du∗i
Dt∗

= −∂p
′∗

∂x∗i
− Ri(0)

R
ρ′∗δi3 +

1

Re

∂2u∗i
∂x∗2j

, (2.4)

∂u∗j
∂x∗j

= 0, (2.5)

Dρ∗

Dt∗
=

1

RePr

∂2ρ∗

∂x∗2j
, (2.6)

in which asterisks denote non-dimensional quantities, primes denote departure from
hydrostatic balance, summation is implied by repeated subscripts, and D/Dt rep-
resents the material derivative. Henceforth, we will only consider non-dimensional
quantities, and so we will drop the asterisks. Also, we drop the primes on p and ρ.

Characteristics of the flow depend on three non-dimensional parameters: the
Reynolds number Re, the Prandtl number Pr and the midplane Richardson num-
ber Ri(0). For simplicity, we have chosen the Prandtl number Pr ≡ ν/κ = 1 in all
simulations. This value is of the same order as typical atmospheric values (e.g. in
air Pr ∼ 0.7) but is appreciably smaller than typical experimental values (in which
Pr ∼ 700, if salt-stratified water is the experimental fluid). Therefore, it is important
to remember that mass diffuses appreciably more rapidly relative to momentum in our
simulations than would be the case in a salt-stratified fluid. We chose the Reynolds
number to be 750 (a typical experimental value) where Re = V0d/ν. Finally, and in
order to investigate the effect of weak to moderate density stratification, we have
chosen to analyse flows with the four values of Ri(0) = RRi0 = 0, 0.025, 0.05 and 0.1.

All of our numerical simulations of the process of turbulent collapse of stratified
mixing layers were conducted using a modified version of an anelastic model (see
Clark 1977 and Peltier et al. 1978 for further details). This model is based upon the
use of second-order accurate finite differences to solve (2.4)–(2.6) on a staggered grid,
while the equations are stepped forward in time using an explicit leapfrog scheme,
which is stabilized by the introduction of an Euler backwards step every 10 time
steps. The streamwise extent Ly of the computational domain was taken in all cases
to be equal to one wavelength λ of the most unstable mode of linear inviscid theory
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(see Drazin & Reid 1981) for the background profiles defined by (2.1) and (2.2). This
implies Ly ' 14.7d.

The spanwise extent Lx was chosen to be 10 shear half-depths, i.e. Lx = 10d.
This extent was chosen to be sufficiently wide so that core-centred modes (with
wavelengths of the order of (0.6–0.7) λ, as discussed by Nygaard & Glezer 1990,
1991) would be allowed to grow within the flow domain. This spanwise extent also
allows the development of multiple streamwise vortices in the spanwise direction, and
so will provide a basis on which to compare the theoretically predicted spanwise scale
with that delivered by the numerical simulations.

Periodicity in both the spanwise and the streamwise direction was imposed upon the
numerical simulations. Our computations for the most part consider the development
of a single KH billow, and exclude the possibility of subharmonic instabilities. We
impose free-slip and no-normal-flow boundary conditions for the velocity components
at the vertical boundaries of the domain, as well as no stress, and zero density flux.
The vertical extent (for comparison with the multiple billow calculations briefly
reported in Caulfield & Peltier 1994) was set at 20 shear layer half-depths, i.e.
−10 < z < 10. Through various resolution checks, we found that we were obliged
to include 100 gridpoints in each coordinate direction (i.e. Nx = Ny = Nz = 100).
This seemed to be sufficient for proper description of the three-dimensional motion.
For direct comparison, we used the same streamwise and vertical grid, and identical
non-dimensional parameters for the two-dimensional calculations.

To investigate the development of such flows with time, we decompose the various
flow fields into mean and perturbation parts. Furthermore, since we believe that the
development of three-dimensional motions is crucial to the behaviour of the flow,
we wish to further subdivide the perturbation velocity field into a spanwise averaged
part, and an inherently three-dimensional deviation.

To conduct our analyses at any particular instant in time, we therefore consider the
total three-dimensional flow field which has developed from initial conditions defined
by (2.1)–(2.2), and write the velocity fields as

u(x, y, z, t) = [u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)], (2.7)

V̄(z, t) = 〈u〉xy = [0, V̄(z, t), 0], (2.8)

ukh(y, z, t) = 〈u− V̄〉x = [0, vkh, wkh], (2.9)

u3d(x, y, z, t) = u− ukh − V̄ = u− 〈u〉z = [u3d, v3d, w3d], (2.10)

where the subscript kh refers to the spanwise-averaged perturbation, which we identify
with the primary KH billow, and the subscript 3d refers to the perturbation which
deviates from spanwise-averaged flow. In these expressions 〈.〉p denotes an average in
the p-direction, i.e.

〈f(x, y, z)〉p ≡ 1

Lp

∫ Lp

0

f(x, y, z) dp, (2.11)

where p is either x, y or z.
It is possible to decompose the density field in a similar way, to obtain

ρ̄(z, t) = 〈ρ〉xy, (2.12)

ρkh(y, z, t) = 〈ρ− ρ̄〉x, (2.13)

ρ3d(x, y, z, t) = ρ− 〈ρ〉x = ρ− ρkh − ρ̄. (2.14)
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Figure 2. Schematic diagram of the total energy budget of the flow, showing all possible reversible
changes (shown by solid lines and arrows) and irreversible changes (shown by dashed lines and
hollow arrows) and exchanges between the kinetic energy K, potential energy P, and internal
energy I of the flow.

To understand the evolution and development of perturbations within the flows
under consideration, it is important to understand how energy may be redistributed
as the perturbations evolve. The energy budget is shown schematically in figure 2
(following Winters et al. 1995) with the various possible energy conversions indicated.

2.1. Kinetic energy

In the Boussinesq approximation, we may identify the average total kinetic energy
per unit mass of the flow over the computational domain as

K(t) = 〈[(u2 + v2 + w2)/2]〉xyz, (2.15)

which can be subdivided into three constituent parts analogously to the velocity and
density fields as

K = K̄+Kkh +K3d, (2.16)

where

K̄=〈(V̄ 2)/2〉z, (2.17)

Kkh = 〈(v2
kh + w2

kh)/2〉yz, (2.18)

K3d = 〈(u2
3d + v2

3d + w2
3d)/2〉xyz. (2.19)

These three average kinetic energies may be identified respectively as the average
kinetic energy of the mean, background flow, the average kinetic energy associated
with the spanwise-averaged two-dimensional perturbation, and the average kinetic
energy of the three-dimensional deviation from the spanwise average. We average
over the volume to remove dependence on the chosen volume of the domain.

The evolution equation for K(t) can be shown to be

σ =
1

2K
d

dt
K =

1

2K
(
−Ri(0)

R
〈ρw〉xyz − 1

Re
〈(∇u)2〉xyz

)
, (2.20)

≡H+D, (2.21)

defining σ, a ‘growth rate’ for the total velocity u. Instantaneously, 〈|u|〉xyz ∝ exp (σt)
in general. Naturally, D is negative definite, and quantifies the loss of average kinetic
energy (to the internal energy of the fluid) due to viscous dissipation. This loss is
irreversible. The first term on the right-hand side of (2.20) is the (non-dimensional)
buoyancy flux, which quantifies the exchange between the average total kinetic energy
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of the flow and the average total potential energy of the flow. IfH is positive, the net
effect of the perturbations is to move relatively dense fluid downwards (and relatively
light fluid upwards) thus reducing the total potential energy of the system, and thus
increasing the total kinetic energy of the system. As an aside, the total kinetic energy
budget equation may be employed as a very useful independent check on the accuracy
of the numerical model, and for the resolution which we have chosen, this equation
was satisfied to very high accuracy. Indeed, we found that the dominant source of
error in (2.20) was due to the Boussinesq approximation, with the exact full kinetic
energy equation for our flow being correct to within at most one part in 106, even
when there was significant small-scale motion occurring.

We are principally interested in the development of three-dimensional motions, and
so concentrate on the development of an evolution equation forK3d. As we shall see,
three-dimensional motions are most significant when the KH billow has saturated,
and so we are interested in the initial development of three-dimensional motions
when

K3d � K̄+Kkh. (2.22)

Linearizing about the spanwise-averaged flow, we can estimate σ3d, the instanta-
neous growth rate of the three-dimensional perturbation velocity (instantaneously
〈|u3d|〉xyz ∝ exp (σ3dt) in general), from the equation

σ3d =
1

2K3d

d

dt
K3d =

1

2K3d

[
−
〈
v3dw3d

∂V̄

∂z

〉
xyz

−
〈(

v2
3d

∂vkh

∂y
+ w2

3d

∂wkh

∂z

)〉
xyz

−1

2

〈(
v2

3d − w2
3d

)(∂vkh
∂y
− ∂wkh

∂z

)〉
xyz

−Ri0 〈ρ3dw3d〉xyz − 1

Re

〈
(∇u3d)

2
〉
xyz

]
, (2.23)

≡ SHB3d +SHKH3d +ST3d +H3d +D3d. (2.24)

The dissipation term D3d is negative definite. The three-dimensional perturbation
kinetic energy can extract energy from both the mean background field (through
SHB3d) and the two-dimensional KH flow field (through SHKH3d) through the
action of shearing, or tilting stresses.

Furthermore, the three-dimensional perturbation can also be subject to a stretching
deformation through ST3d provided there is significant anisotropy in the three-
dimensional perturbation field. By separating the two-dimensional fields into a hori-
zontally averaged part, and a two-dimensional deviation from this horizontal average,
we can investigate for any given perturbation whether contributions from the back-
ground flow or from the two-dimensional perturbation dominate the growth of the
three-dimensional perturbation.

2.2. Potential energy

The exchange between the total kinetic energy of the system and the potential
energy of the system is fundamental to the evolution of perturbations within stably
stratified shear layers. It also parameterizes the amount of mixing within the flow. A
reasonable working measure of the amount of mixing within a flow is the extent to
which the total potential energy of the system increases. It is important to distinguish
between reversible changes (stirring) and irreversible changes (mixing). Stirring must
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be associated with larger scale motions within the flow, while mixing involves motions
extending to the smallest scales.

If a parcel of relatively dense fluid is lifted upwards by the fluid motion, the
total potential energy of the system is increased. However, if it is possible to return
this parcel (without any change of its constituent parts) adiabatically to its original
location, then the potential energy will return to its original value. The stirred
fluid has, transiently, increased its potential energy by some amount, but this excess
potential energy is still available to be converted back into kinetic energy. This
concept of available potential energy or APE for exchange into kinetic energy of the
flow, originally developed by Lorenz (1955), has had wide application in atmospheric
dynamics. Winters et al. (1995) further developed the concept of a subdivision of
average total potential energy P within stratified, dissipative flows into two parts: the
background potential energy PB , which cannot be converted into kinetic energy, and
the available potential energy PA, which can be so converted.

At any instant, the minimum, or background, average potential energy PB of a
fluid flow is the average potential energy associated with an adiabatic rearrangement
of fluid parcels such that the variation of fluid density with height is strictly mono-
tonic (and decreasing upwards) throughout the fluid. This rearrangement defines a
notional, one-dimensional and strictly statically stable density distribution ρB(z). Such
a rearrangement is shown schematically in figure 3. It is assumed that the fluid may
be subdivided into indivisible parcels, each of which has a constant density. These
parcels are sufficiently small so that any motions of a smaller scale than a particular
parcel must lead inevitably to an irreversible change in the constituents of that parcel.
(In a finite difference numerical simulation for example, we can identify each grid
element as a rectilinear box of fluid.) These parcels are sorted by density, and then
distorted (while maintaining a constant volume, and hence not changing the density)
to extend over the entire horizontal extent of the flow domain, as shown schematically
in the figure. This rearrangement defines the density profile ρB , in terms of which the
average background potential energy of the system is

PB = Ri(0)〈ρB(z)z〉z/R. (2.25)

PB is the minimum possible average potential energy of the entire system, discretized
in the particular way defined by the initial choice of parcels. The average available
potential energy PA, which is available to be converted into kinetic energy, is then
simply defined as

PA = P−PB. (2.26)

As pointed out by Winters et al. (1995), and also implemented by Scinocca (1995),
this adiabatic rearrangement is straightforward to implement in a numerical simula-
tion. The fluid is redistributed notionally within the computational domain into the
strictly monotonic, stably stratified state with density distribution ρB by notionally
deforming each of the computational grid boxes into thin sheets of constant-density
fluid as shown schematically in figure 3. The average potential energy PB of such a
configuration may then be computed, and its evolution tracked with time.

We define the average (total) potential energy of the system as

P = Ri(0)〈ρz〉xyz/R = Ri(0)〈zρ̄〉z/R, (2.27)

i.e. the evolution of potential energy is entirely determined by the evolution of the
vertical profile of mean density. The time evolution of the average total potential
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Figure 3. Schematic diagram of the adiabatic redistribution of fluid parcels (with densities ρ± 3∆ρ
and ρ±∆ρ) to evaluate the background density distribution ρB associated with the average minimal
background potential energy PB of a flow. Also shown are the vertical distributions of the mean
density ρ̄ and the background density distribution ρB .

energy is governed by the equation

d

dt
P =

Ri(0)

R
〈ρw〉xyz + D̂P, (2.28)

where D̂P is the diffusive irreversible conversion of the fluid’s internal energy into
potential energy, and is strictly positive, and the hat denotes no normalization by 2K.

Our domain was sufficiently deep so that to a good approximation D̂P was constant,
and equal to

D̂P = Ri(0)/(10RRePr). (2.29)

Thus the average potential energy is irreversibly increasing at a constant rate due
to diffusion. Within our simulations, this term plays a negligible role in the dynamic
evolution of the flow.

On the other hand the buoyancy flux term, −Ĥ = −2KH, where H is as
defined in (2.21) may be positive or negative depending on the particular structure of
perturbations, plays a fundamental role in the flow dynamics. The average background
potential energy always increases with time, either through mixing or diffusion of the

mean fluid density profile, at a rate that is bounded below by D̂P. Since it is possible
by direct calculation to determine continuously the rate at which PB is increasing, the
evolution equations for the two distinct components of the potential energy density
may be written as

d

dt
PA = −Ĥ − M̂ ≡ Ŝ, (2.30)

d

dt
PB = M̂+ D̂P, (2.31)

where M̂ is a non-negative quantity which may be identified as the instantaneous

mixing rate, and Ŝ is (by definition) the instantaneous stirring rate. It is important

to appreciate that, in the absence of motion, M̂ → 0, and so ‘mixing’ as we define it
is inherently related to fluid motion.

2.3. Mixing efficiency

The instantaneous mixing rate M̂ may be used to define instantaneous and cumulative
mixing efficiencies within a shear flow in a manner consistent with definitions used in
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experiments (Linden 1979). Conventionally, mixing efficiency is defined as the ratio of
the increase in the total potential energy of the system to the work done on the fluid
(by the driving mechanism). As mentioned in the introduction, the effective Prandtl
number of salt-stratified experiments is appreciably higher than in our numerical
calculations, and so the effect of DP is appreciably weaker (see (2.29)). As already
noted DP can be precisely calculated and plays no significant role in the development
of mixing within our simulations. Within a salt-stratified fluid, this diffusive term will
be even smaller, and diffusive increases in flow potential energy will take place over
even longer timescales. Therefore, we choose to remove explicitly contributions due
to this term from the numerically calculated average potential energy, thus improving
comparison between numerical simulations and experiments.

In experiments, the work done on the fluid is the amount of energy which is pumped
into small scales by the breakdown of forced large-scale disturbances, some of which is
dissipated, and some of which causes the fluid to mix, and thus increase the potential
energy of the system. Clearly, the mixing efficiency must always be less than one, and
is typically of the order 0.1 ∼ 0.2. Of great interest is the dependence of the mixing
efficiency on the overall stratification of the system (measured by some appropriate
Richardson number). Non-monotonicity in this dependence has been observed in
many different experiments (Linden 1979; Park et al. 1994) in the sense that there
is some (non-zero) ambient stratification which maximizes the mixing efficiency. As
originally theoretically postulated by Phillips (1972) and Posmentier (1997), and more
recently developed by Barenblatt (1993) and Balmforth, Llewellyn Smith & Young
(1998), this non-monotonicity is responsible for the evolution of the density field
into a layered staircase structure. Through time, the mixing induced by turbulent
motions causes the density field to evolve into relatively well-mixed regions separated
by appreciably thinner regions of high density gradient. Such density staircases are
commonly observed in the oceans, as well as experimentally (Park et al. 1994).

To develop an analogous definition of mixing efficiency within an unforced free
shear flow, it is sensible to identify the work done on the fluid with the amount
of kinetic energy which is irreversibly lost by the fluid. Using (2.30), (2.20) may be
rewritten as

σ(t) = −S−M+D, (2.32)

where the mixing rate and stirring rate have been normalized by division by 2K(t).
The last two terms describe the rate at which kinetic energy is irreversibly lost from
the flow to mixing and to dissipation. Since throughout a simulation each of these
terms can be determined at any particular instant, and in general will be functions of
time, a natural definition of an instantaneous mixing efficiency Ei is

Ei ≡ M
M−D < 1. (2.33)

It is actually of most interest to understand the cumulative mixing efficiency of a shear
flow throughout its evolution, by analogy with experiments. Therefore, we define a
cumulative mixing efficiency Ec as

Ec(t) ≡

∫ t

0

M(u) du∫ t

0

M(u) du−
∫ t

0

D(u) du

. (2.34)
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Figure 4. Time evolution in an inherently two-dimensional flow of: (a) K(t)/K(0) (defined by
(2.15)); and (b) Kkh(t)/K(0) (defined by (2.15) and (2.18)); for Ri(0) = 0 (solid line), Ri(0) = 0.025
(dashed line) Ri(0) = 0.05 (dotted line) and Ri(0) = 0.1 (dot-dashed line).

3. Two-dimensional simulations
We have conducted a sequence of two-dimensional simulations with initial profiles

of velocity and density given by (2.1) and (2.2) for comparison with fully three-
dimensional simulations. The initial minimum Richardson numbers were set at 0,
0.025, 0.05 and 0.1. We initialized the calculations with a perturbation of the form
of the eigenfunction of the most unstable (inviscid) mode of linear theory. Since
the behaviour of a two-dimensional KH billow is well understood, the perturbation
amplitude was chosen so that, for all calculations Kkh(0)/K(0) = 1.9 × 10−5, and
so the KH billow had a relatively brief linear phase of development. For subse-
quent comparison with the results of our three-dimensional simulations, we wish to
understand the global characteristics of flows restricted to two dimensions (and in
particular the mixing efficiency of such flows) so that we can later determine how
three-dimensionality crucially modifies flow evolution.

In figure 4(a) we plotK defined by (2.15), normalized with its initial value, against
time for each of our simulations. The behaviour of the unstratified simulation (shown
with a solid line) is quite straightforward, as K decreases monotonically due to
viscous dissipation. The rate of this decay is quite slow, and clearly does not vary
greatly over the time shown (or indeed over significantly longer timescales). Since
dissipation is dominated by contributions from small-scales gradients, this implies
that there is little small-scale motion within the flow. For the stratified simulations,
there is still an underlying trend of decrease in K due to viscous dissipation, but
there is also an oscillation in K due to the effect of exchanges, both reversible and
irreversible, between the kinetic energy and the potential energy of the system.

As the billow rolls up, the buoyancy fluxH is negative, and so the potential energy
of the flow increases due to the fluid motion. In figure 5 we plot P − DPt − P(0)
(where t is the time from the start of the simulation and DP is as defined in (2.29))
with a solid line, PB − DPt − PB(0) with a dashed line, and PA − PA(0) with a
dotted line. From this figure, it is clear that the initial vortex roll-up is essentially
a stirring mechanism, and leads to a significant increase in the average available
potential energy PA. Much of this PA is reversibly exchanged back into kinetic energy
of the flow, as can be deduced from the fact that the average total potential energy P
subsequently decreases, and the average total kinetic energy K of the stratified flows
actually increases transiently.

This exchange is imperfect, as in a two-dimensional flow at these Reynolds numbers
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the dominant mixing process occurs immediately after the roll-up of the primary KH
billow (leading to an irreversible increase in PB) associated with mixing within the
statically unstable regions of the flow. There is a significant increase in PA, which is
associated with the re-creation of statically unstable regions within the flow as the
KH billow continues to roll up, with the intensity varying with the initial ambient
stratification (see figure 5a, c, e). The statically unstable regions at the periphery
of the primary billow core can be considered to have a finite lifetime, which is of
the order of 10–20 non-dimensional time units. Since (as can be seen in figure 1b)
the statically unstable regions are of the same order as the initial density layer
half-depth (and hence, from (2.1) and (2.2) of the same order as the initial shear
layer half-depth d) the non-dimensional timescale for diffusion to strongly affect
these statically unstable regions is of the order of RePr = 750, appreciably longer
than their numerically observed lifetime. Therefore, the available potential energy PA
derives motions appreciably more rapidly than diffusion can affect the flow, and so
we feel confident that density diffusion does not play a significant dynamical role in
the development of motions within these regions.

Physically, the development of the KH instability leads to a significant broadening
in the depth of the shear layer, indicative of an overall redistribution of the average
total kinetic energy from the mean flow into the perturbation. The process of roll-up of
the KH billow also strongly modifies the density distribution. A layer of intermediate
density is formed by the irreversible mixing induced by the creation of statically
unstable regions during the roll-up of the primary KH billow. This intermediate layer
is separated by relatively thin regions of high density gradient from the fluid above
and below the mixing layer.

In figure 4(b), we plot the time evolution of the two-dimensional perturbation
kinetic energyKkh, normalized by the initial value of the average total kinetic energy,
i.e. K(0). In each case the perturbations undergo essentially exponential growth
initially, with the growth rate and peak amplitude decreasing with stratification as is
expected. Subsequently, the amplitude of the primary billow oscillates and the billow
nutates slightly, with Kkh being maximum when the billow is closest to circular. This
oscillation is due to a reversible exchange of kinetic energy between the mean field
and the perturbation.

In attempting to consider quantitatively the issue of mixing efficiency, it is important
to remember that these two-dimensional flows never become turbulent in any real
sense, and hence the dissipation rate of the total kinetic energy D is always quite
small. Therefore, from our definition (2.34) of the cumulative mixing efficiency Ec, we
expect Ec ∼ 1 for these two-dimensional flows. This is indeed the case, as shown in
figure 5(b, d, f). Two points should be noted. First, the most significant mixing events
(and thus peaks in Ei, also plotted in the figures) occur after the KH billow saturates.
These events correspond to the mixing associated with the statically unstable regions
induced within the billow itself, and take significant periods of time to complete. After
these mixing events are completed, the mixing efficiency falls until statically unstable
regions once again develop within the primary billow core, as the billow continues to
rotate. New statically unstable regions then in turn lead to mixing events, and thus
another peak in Ei. Secondly, we find that Ec is a monotonically increasing function of
Ri(0) for the three flows which we have considered, although the qualitative structure
of the time variation of Ec varies little with Ri(0). This is not entirely surprising, as
the flows are never turbulent, and the dissipation rate is not a strong function of
Ri(0), whereas the mixing rateM increases strongly with stratification. The dominant
mechanism for mixing is associated with the roll-up of the billow itself.
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Figure 5. Time variation of P(t)−DPt−P(0) (defined by (2.27) and (2.29)) (solid line), PA(t)−PA(0)
(defined by (2.26)) (dotted) and PB(t) − DPt − PB(0) (defined by (2.25)) (dashed) for inherently
two-dimensional simulations with (a) Ri(0) = 0.025; (c) 0.05; (e) 0.1, compared with the time
variation of Ei (defined by (2.33)) (solid line) and Ec (defined by (2.34)) (dashed) for inherently
two-dimensional simulations with (b) Ri(0) = 0.025; (d) 0.05; (f) 0.1.

From these calculations, it would appear that a natural instant of time at which to
consider the structure of the flow is the time at whichKkh is a maximum. We shall refer
to this time as t2dmax. In figure 6 we plot the distribution of the spanwise vorticity for
each of the different simulations at the relevant time t2dmax. For each of the stratified
simulations we shade the statically unstable regions of the flow which have developed
due to the roll-up of the primary KH billow. When Ri(0) = 0, the structure of the
flow is relatively simple, with the vorticity in the flow now concentrated in an elliptical
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Figure 6. Contours of spanwise vorticity at time t2dmax for inherently two-dimensional simulations
with (a) Ri(0) = 0, t2dmax = 34.0; (b) 0.025, t2dmax = 38.2; (c) 0.05, t2dmax = 42.0; (d) 0.1, t2dmax = 57.6.
Statically unstable regions of the flow are shaded.

region, which nevertheless extends over a greater width than the original shear layer.
This spreading of the vorticity can be thought of as leading to a thickening of the
mixing layer region. Momentum has been redistributed through a greater depth of
the flow than in the initial (laminar) flow, but the flow remains highly ordered.

With Ri(0) 6= 0 however, the evolution of the spanwise vorticity field is markedly
different, as there are now potential sources and sinks of spanwise vorticity, due to
baroclinic torques which in the Boussinesq approximation are driven by streamwise
gradients in the density field (see Staquet 1995 for a detailed discussion). On a large
scale, also note that the vertical extent of the vortical region (the KH billow) is
somewhat reduced by the influence of the vertical density stratification. From the
shading in figure 6(b–d), the periphery of the primary billow core is the dominant site
of static instability. (See KP85 and KP91 for a fuller discussion, where these regions
are referred to as super adiabatic regions or SARS.) These convectively unstable
regions are deepest at the upstream edge of the upper periphery of the primary KH
billow, and at the downstream edge of the lower periphery of the primary KH billow.

4. Secondary stability analysis
We conducted a secondary stability analysis of the non-parallel flows shown in figure

6 using the methodology described in KP85 and KP91. Fundamentally, we make four
assumptions, which reduce the stability analysis to an eigenvalue problem. First, we
assume that it is possible initially to decompose the total flow into a quasi-steady, two-
dimensional part (figure 6), and a small-amplitude three-dimensional part. Secondly,
we assume that both the background flow and the three-dimensional perturbation may
be considered periodic in the streamwise direction, with some characteristic length
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scale Ly , chosen to be the wavelength of the most unstable mode of linear theory.
Thirdly, we assume that the three-dimensional disturbances have significant amplitude
over a finite vertical extent, and so on the basis of Floquet theory, (see, for example,
Bender & Orszag 1978) the spanwise part of the three-dimensional perturbations may
be separated from the streamwise-vertical two-dimensional part. Our final assumption,
which requires detailed knowledge of the evolution of the (inherently) unsteady two-
dimensional background flow, is to suppose that the two-dimensional background
flow is steady. We can then assert that the temporal and spatial parts of u3d and ρ3d

are separable, and so finally, we may write the three-dimensional perturbation as

u3d(x, y, z, t) = u†3d(y, z) exp [iγx+ nt], (4.1)

ρ3d(x, y, z, t) = ρ
†
3d(y, z) exp [iγx+ nt]. (4.2)

where

n ≡ nr + ini. (4.3)

In all cases studied, we found that the growth rate for any given group of modes (in
a harmonic sequence) was largest when ni = 0, which is the case on which we focus
here.

The validity of the last separability assumption (which allows us to turn the initial
value problem into an appreciably simpler eigenvalue problem) requires the growth
rate nr of the three-dimensional perturbation to be appreciably larger than the rate at
which the background flow evolves, as discussed in detail in Smyth & Peltier (1994),
and more fully in Potylitsin & Peltier (1998). In the particular case under consideration,
the Reynolds number of the flow is sufficiently large so that the variation of the two-
dimensional flow is dominated by the variation in the two-dimensional perturbation
associated with the KH billow. As can be seen from the evolution of Kkh in figure
4b, after the primary KH billow has saturated, the normalized growth rate σkh of the
KH billow, defined as

σkh =
1

2Kkh

d

dt
Kkh, (4.4)

is bounded above by 0.02 for all times after the maximum amplitude of the pertur-
bation has been attained for all of our simulations. To ensure that the separability
assumption is justified, we must then disregard any predicted three-dimensional in-
stabilities unless the growth rates associated with them are such that

nr � |σkh|. (4.5)

The perturbation defined in (4.1) and (4.2) can then be approximated using an
appropriately truncated Galerkin representation (see KP85), and then, upon lin-
earization of the governing equations about the two-dimensional background flow,
the stability problem reduces to a matrix eigenvalue problem which may be solved
using conventional techniques. The method not only yields values for the spanwise
wavenumber γ and growth rate nr , but also the spatial distribution of the pertur-
bation, u†3d(y, z) and ρ

†
3d(y, z) and hence the average three-dimensional perturbation

kinetic energy density K3d, defined in (2.19).
In general, K3d associated with any particular mode may be considered to be the

average of a two-dimensional quantity K3d(y, z), defined by

K3d = 1
2
〈(|u†3d|2 + |v†3d|2 + |w†3d|2)〉yz, (4.6)

≡ 〈K3d(y, z)〉yz. (4.7)
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Ri(0) γ nr SHB3d SHKH3d SH3d H3d ST3d D3d

0.000 0.9 0.0849 0.1051 −0.0159 0.0892 0 0.0006 −0.0049
0.000 2.5 0.1471 0.1241 0.0174 0.1415 0 0.0192 −0.0136
0.025 2.8 0.1299 0.1068 −0.0040 0.1028 0.0256 0.0187 −0.0172
0.050 3.3 0.1796 0.1149 −0.0239 0.0910 0.0911 0.0191 −0.0216
0.100 4.6 0.2565 0.0780 −0.0021 0.0759 0.1738 0.0473 −0.0405

Table 1. Properties of the most unstable three-dimensional modes at varying Ri(0).

By investigating the spatial structure of K3d, we are able to identify the dominant
sites of three-dimensionalization predicted by the stability analysis. Furthermore,
as discussed in KP91, since we know the three-dimensional perturbation fields, we
are able to evaluate the terms on the right-hand side of (2.23) associated with a
particular three-dimensional perturbation. Such terms also allow us to perform a
useful independent check on the accuracy of our calculations, i.e. to check that
nr = σ3d, and so

nr =SHB3d +SHKH3d +ST3d +H3d +D3d (4.8)

is satisfied, where each of the terms is determined, analogously toK3d in (4.6), directly
from the three-dimensional perturbation given in (4.1) and (4.2). For all the results
presented in this paper, (4.8) is satisfied to better than 1%.

For each flow, we found a weak dependence of nr on γ, provided γ is sufficiently
large. The wavenumber γ at which maximal growth is predicted to occur does increase
with increasing stratification however, varying from γ = 2.5 for the unstratified flow
to γ = 4.6 for the flow with Ri(0) = 0.1, as presented in table 1. The values of the
various terms on the right-hand side of (4.8) are also shown, whereSH3d =SHB3d+
SHKH3d is the total shearing contribution to growth. The wavenumbers which are
predicted imply that the characteristic spanwise scale of secondary instability should
be significantly less than the streamwise wavelength of the characteristic KH billow.

For the stratified flows, the wavelength of the most unstable mode is of the same
order as the depth of the convectively unstable region around the periphery of the
primary KH billow core. Klaassen & Peltier (1985b) found that the primary effect
of variations in the characteristics of secondary instabilities with the fluid’s Prandtl
number could be traced to variations in the depth of these convective regions. Within
their calculations, the variations in the depths of these convective regions could be
attributed to the varying lengths of time that primary KH billows took to saturate.
This is reasonable, since the stability analysis assumes that the flows (shown in figure
6) remain frozen in time. Provided the development of the primary KH instability is
sufficiently rapid so that the effects of diffusion of the density field are small (which
it is for sufficiently high Re and sufficiently low Ri(0), the characteristic scale of the
convectively unstable regions will be of the same order as the initial characteristic
depth of density variation, which scales with the shear layer depth (see (2.1) and (2.2),
remembering that R = 1.1 in our simulations).

In general, there is a slight change in the form of the growth rate curve around
γ = 0.9, with a lesser growth rate than at the higher wavenumbers. Furthermore, the
maximal growth rate of the secondary instability appears to be a strong function
of Ri(0), with the initially surprising result that increasing the background stable
stratification actually increases the growth rate of the secondary instability.
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Figure 7. Contours of K3d (as defined in (4.7)) for the most unstable mode in flows with
(a) Ri(0) = 0 (thin solid lines show the most unstable (hyperbolic) mode with γ = 2.5, thick
solid lines show the most unstable elliptical mode with γ = 0.9); (b) Ri(0) = 0.025; (c) 0.05; (d) 0.1.

4.1. Unstratified secondary instability structures

In figure 7(a), we plot (with thin solid lines) contours throughout the computational
domain of K3d defined by (4.7) for the most unstable eigenmode of the unstratified
simulation with Ri(0) = 0. As has been noted previously by KP91 the most important
detail to note is that the energy associated with this mode is predominantly located
in the braid region in the case of the unstratified flow. There is some amplitude of
perturbation around the periphery of the KH billow, but there is essentially none in the
billow core. This braid-centred instability, which was identified by KP91, dominates
the high-wavenumber part (γ > 1) of the three-dimensional instability spectrum for
unstratified flows, and appears to be fundamentally unrelated to the elliptical mode of
instability for flows with sufficiently high Reynolds numbers. Because the streamlines
of the flow induced by the primary KH billow are locally hyperbolic in the vicinity
of the braids, we will henceforth refer to the basic mode as constituting a hyperbolic
instability.

This technique also predicts the development of instabilities which have similar
structure to the elliptical instability of Pierrehumbert & Widnall (1982) but only at
lower growth rate, with the maximal growth rate occurring for modes of this structure
having spanwise wavenumber γ = 0.9, as listed in table 1. In figure 7(a), we also plot
K3d for this mode with thick solid lines, which has growth rate less than 60% of
the most unstable braid-centred mode with wavenumber γ = 2.5. Clearly, the two
modes are localized in distinct parts of the flow. Based upon our analyses of the flow
associated with the maximum-amplitude unstratified KH billow with Re = 750, the
band of spanwise wavenumbers susceptible to this elliptical instability is relatively
narrow. The most unstable mode has a wavenumber that is appreciably smaller than
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the most unstable braid-centred or hyperbolic instability. This result is consistent with
the results of Smyth & Peltier (1994), developing KP91.

The dominant physical source for the growth of perturbation kinetic energy for
both the braid-centred mode and the core-centred mode is identified by considering
the relative magnitudes of the various terms in table 1. By far the dominant source
of energy is the background shear (consistently with the observations of KP91) and
the flow directly associated with the two-dimensional KH billow, though essential
to the growth of the perturbation, fulfils a role which is appropriately described
as ‘catalytic’. Physically, both instabilities are translative in nature, since the core-
centred perturbation corresponds to a spanwise periodic raising and lowering of
the primary billow core, while the distinct, significantly more unstable hyperbolic
instability corresponds to a spanwise periodic raising and lowering of the braid
region normal to its angle of orientation.

Although the predictions of this theory are only valid during the linear phase of
(secondary) flow development, the predicted hyperbolic instability structures which
develop within the braid are of a form that is conducive to further growth in
amplitude as their development becomes nonlinear. These structures (i.e. streamwise
vortex tubes which develop in the braid region and are aligned with the streamwise
principal direction of strain) are naturally coherent in a way such that v3dw3d < 0, and
thus can continue to extract energy efficiently from the background shear flow as the
amplitude of the perturbation increases. The development of the hyperbolic instability
does, of itself, fully explain the appearance of the observed streamwise tubes at finite
amplitude (see Potylitsin & Peltier 1998 for an explicit demonstration of this fact
based solely upon the non-separable linear stability analysis). The behaviour of the
flow is dependent on the local characteristics in the vicinity of the braid, with no
external forcing (or supply of vorticity) from neighbouring billows being required,
since streamwise vorticity is in the nature of the perturbation structure itself, and can
be further supplied by tilting of the spanwise vorticity of the braid.

4.2. Stratified secondary instability structures

In figure 7(b–d), we plot contours throughout the computational domain of K3d

defined by (4.7) for the most unstable eigenmode for each of our stratified flow
calculations. As Ri(0) increases, there is a clear transition to a fundamentally different
structure from the braid-centred mode which we predict to dominate the development
in an unstratified flow. For the simulations with Ri(0) = 0.05 and Ri(0) = 0.1, the
structure of K3d is very similar, with dominant contributions to the perturbation
kinetic energy of the mode from two regions. One is below and slightly towards the
leading edge of the primary billow and the other is above and slightly towards the
trailing edge. These results are consistent with the lower resolution calculations of
KP85 and KP91. Importantly, these regions of strong perturbation kinetic energy
appear to lie within the statically unstable regions induced by billow roll-up as shown
in figure 6. For these two higher values of Ri(0), there is negligible contribution to
the kinetic energy of this mode in the braid region. However, for Ri(0) = 0.025, there
appears to be a hybrid instability, combining both the braid-centred structure of the
instability in the unstratified case with significant contributions from the statically un-
stable regions on the periphery of the primary billow core. The quantitative integrated
data for the various contributions to growth is also presented in table 1.

The net effect of all these contributions is a non-monotonic dependence of the
predicted growth rate of the most unstable three-dimensional perturbation with
Richardson number (principally due to the increased influence of the buoyancy
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flux term H3d). As Ri(0) increases, the wavenumber of the most unstable mode
increases. As this implies a transition of the characteristic motion to smaller scales,
the dissipation D3d also increases with Ri(0). The total absolute effect of the shearing
contributions decreases with increasing Ri(0). In all cases the shearing contribution
associated with the extraction of energy from the mean background field is much larger
than the shearing contribution that extracts energy from the two-dimensional flow
associated with the KH billow, i.e. SHB3d � |SHKH3d|. Also, as Ri(0) increases,
the effective contribution of the buoyancy flux termH3d increases. Perhaps somewhat
more surprising is the fact that the straining contribution ST3d is substantially
larger at high Ri(0). This is due to the increased anisotropy in the velocity field, with
|w†3d| > |v†3d|.

This anisotropy occurs because the presence of statically unstable layers induces
very large values of perturbation vertical velocity in the statically unstable regions,
particularly for the more strongly stratified simulations (with Ri(0) = 0.05 and 0.1).
These vertical velocities are predicted to be appreciably larger in amplitude than in the
unstratified flow. Essentially, the perturbation is organized so as to extract efficiently
some of the available potential energy PA which, on the basis of our two-dimensional
calculations, is stored in the statically unstable regions of the density distribution, and
to convert it into perturbation kinetic energy.

To do this implies significant vertical velocity within the statically unstable regions,
associated physically with convective overturning. This localization of significant ver-
tical velocity in these statically unstable regions then affects all the other mechanisms
for energy growth of the perturbation, even after the available potential energy which
was stored in the statically unstable density distribution has been converted into per-
turbation kinetic energy, and through irreversible mixing processes, into background
potential energy PB . Furthermore, since we have assumed explicitly (see (4.1)) that
the perturbation is periodic in the spanwise direction, this significant vertical velocity
of the perturbation is also varying periodically in the spanwise direction. Therefore,
the perturbation which is predicted to be most unstable in a stratified flow induces
significant streamwise vorticity in the regions around the periphery of the primary
billow core.

The effect of the development of these large-amplitude vertical velocity pertur-
bations is naturally most marked on the buoyancy flux contribution H3d. As the
stratification increases, both ρ

†
3d and w

†
3d increase in amplitude. The natural motion

of the system is to transform the available potential energy stored in the statically
unstable regions into kinetic energy of the perturbation, which requires that the buoy-
ancy flux is positive in the statically unstable regions, with largest amplitude where
ρ
†∗
3d and w

†
3d are best (negatively) correlated. This occurs towards the leading edge

of the lower statically unstable region, and towards the trailing edge of the upper
statically unstable region. This combination of perturbation density and perturbation
velocity implies the occurrence of a fully three-dimensional convective overturning in
this region, with spanwise wavenumber γ, further evidence for the onset of streamwise
vortices in these regions.

The selection of the regions towards the leading edge beneath the billow core, and
towards the trailing edge above the billow core is due to two related factors. First,
these localities are regions of relatively high velocities, as it is in these regions of
the flow that the rolling-up of the primary billow core is causing entrainment of
surrounding fluid into the primary billow, and so horizontal velocity perturbations
in particular are encouraged in these regions. Also, in these regions the statically
unstable layer is at its deepest, and so (as discussed in KP85) the local Rayleigh
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number is largest, and therefore the flow is most prone to convective motions, with
attendant vertical velocity perturbation. On the other hand, for the more strongly
stratified flows, there is a relatively strong stratification in the braid region of the
flow, and hence vertical and (to a lesser extent) horizontal velocity perturbations
are suppressed. For the more weakly stratified simulation (i.e. Ri(0) = 0.025) this
effect is not pronounced, and so there is still significant velocity perturbation in the
braid region, and the growing perturbation has many of the characteristics of the
unstratified hyperbolic instability.

5. Three-dimensional simulations
We conducted four fully three-dimensional nonlinear direct numerical simulations

of shear layer evolution, with Ri(0) = 0, 0.025, 0.05 and 0.1. In each case, the
calculations were initialized by superimposing on the background flow a small-
amplitude perturbation with structure determined by the most unstable mode of
linear theory, exactly as in the two-dimensional calculations discussed in § 3, i.e.
Kkh(0)/K(0) = 1.9 × 10−5. We also applied a small-amplitude isotropic noise field
to the spanwise velocity scaled so that K3d(0)/K(0) = 1 × 10−5. It is important to
appreciate that the three-dimensional perturbations are not tuned in any way to the
theoretical predictions of the previous section.

In figure 8 we plot, for each of the simulations, the average total kinetic energy K
(defined in (2.15)), the average kinetic energy associated with the spanwise-averaged
perturbation Kkh (defined in (2.18)), and the average kinetic energy associated with
the three-dimensional perturbation away from this spanwise-average K3d (defined
in (2.19)). In each case the average energies are normalized by the initial value of
K(0).

By direct comparison with the diagrams shown in figure 4, it is apparent that the
evolution of the three-dimensional flows can be considered as passing through four
distinct phases. First, there is a period of growth of the two-dimensional perturbations,
at the expense of the (appreciably) weaker three-dimensional perturbations. During
this period, in each case, the evolution of the fully three-dimensional simulation was
virtually indistinguishable from the evolution of the equivalent two-dimensional simu-
lation, and the three-dimensional motions actually decayed in intensity. Therefore, this
first phase should be thought of as one of inherently two-dimensional development.

The second stage of the flow evolution starts exactly when the primary KH billow
has saturated, i.e. the moment at which the spanwise-averaged kinetic energyKkh is a
maximum (the time t2dmax as marked on figure 8 with an appropriate symbol). In each
of the four cases which we studied, the three-dimensional perturbations immediately
started to amplify upon saturation of the primary KH billow. (cf. Metcalfe et al.
1987 for an unstratified flow). This justifies our choice in § 4 of the time t2dmax as an
appropriate time for analysis of the stability of the two-dimensional flow. Because of
the small initial amplitude of the three-dimensional perturbations, the evolution of the
total kinetic energy K and the spanwise-averaged perturbation kinetic energy Kkh

was very similar to the evolution in the equivalent two-dimensional flow. Although
three-dimensional motions do exist, they are parasitic on the background flow, and
do not cause the bulk characteristics of the total flow to deviate significantly from the
equivalent two-dimensional flow. In particular, Kkh oscillates, indicating oscillation
and nutation of the primary billow core.

Eventually, in all four flows, the evolution of the average total kinetic energy K in
the three-dimensional flow starts to deviate significantly from the evolution of K in
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Figure 8. Time evolution in an inherently three-dimensional flow of: (a) K(t)/K(0) (defined by
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the equivalent two-dimensional flow. This change in behaviour during this third stage
of the flow evolution is associated with the three-dimensional motions achieving an
amplitude which is sufficiently large to have a non-trivial effect on the global flow,
and may be thought of as presaging the transition of the flow to turbulent motion, a
transition which is inherently three-dimensional. The total viscous dissipation increases
markedly, thus leading to an appreciably more rapid decrease in the average total
kinetic energy K. On the figures for the various energies we have marked the time
td at which the normalized dissipation rate of the total kinetic energy D defined in
(2.21) is double its initial value. Though a largely arbitrary subdivision, after this time
the flow is inherently three-dimensional, the viscous dissipation continues to increase,
and small scales spread throughout the flow. Therefore, we use this time td as an
indicator of the transition to turbulence within the flow.

This transition takes a finite time, which is only a weak function of Ri(0). Ultimately,
at a time t3dmax (also marked on figure 8) the three-dimensional motions saturate. This
time delimits the start of the fourth stage of the flow development, namely a period
of intense three-dimensional motions. After this time, the flow is highly disordered,
with the (extremely energetic) three-dimensional motions undergoing a slow decay.
At time t3dmax, K3d is between 2% (for Ri(0) = 0.1) and 12% (for Ri(0) = 0) of the
initial average total kinetic energy K(0). Importantly, as Ri(0) increases, the amount
of dissipation of the average total kinetic energy K decreases.

There is also a clear progression in the evolution of the potential energy of the
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three stratified flows which we have modelled during these four different stages of
flow evolution. In figure 9, we plot the increase in the average total potential energy
P, the increase in the average available potential energy PA and the increase in
the average background potential energy PB (as defined in § 2) against time for the
three stratified flows. The significant times t2dmax, td and t3dmax are marked on figure
9 by vertical thick dotted lines. As before (cf. figure 5) for clarity, we subtract the
underlying increase in average potential energy due to purely diffusive effects from P
and PB , and also the initial values of the various potential energies.

As with the evolution of the kinetic energy of the flow, the evolution of the average
potential energy of each of the stratified flows during the development of the primary
KH billow is essentially indistinguishable in two and three dimensions (cf. figure
5). Also, during the second stage of initial amplification of the three-dimensional
perturbations (i.e. when t2dmax < t < td) there is little difference between the evolution
of the potential energy in a three-dimensional flow and in a two-dimensional flow. The
period of significant three-dimensional perturbation growth in our two more strongly
stratified calculations starts during a stage of irreversible mixing (and thus increase in
the background potential energy PB) but then continues during a period of relatively
small change in the background potential energy PB . This observation suggests that
the initial growth mechanism which triggers the onset of three-dimensional motions
in a stratified flow is intimately related to perturbations in the density field. However,
the subsequent amplification of the three-dimensional structures to finite amplitude
is largely dependent on processes which do not involve density effects.

By comparing figures 8 and 9, we see that the total potential energy of the
system starts to increase significantly at essentially the same time as the total kinetic
energy starts to decrease significantly. Importantly, the increase in potential energy
is not principally due to a reversible exchange between the kinetic energy and
(available) potential energy reservoirs, but is associated with significant increases in
the background potential energy PB of the flow, further indication of significant
mixing occurring within the fluid. The proportional amount by which PB increases
decreases as Ri(0) increases. Enhanced irreversible mixing continues during the post-
transition fourth stage of flow development, after the three-dimensional perturbations
have attained their maximum amplitude.

To illustrate this, in figure 9, we also plot the cumulative and instantaneous mixing
efficiencies (i.e. Ec and Ei respectively, defined by (2.34) and (2.33)) for each of
the three stratified flows in our three-dimensional simulations. During transition both
mixing efficiencies undergo significant reductions, differing qualitatively from the two-
dimensional results presented in § 3 (cf. figure 5), as the effect of enhanced dissipation
greatly outweighs the effect of enhanced mixing. Ultimately, the mixing efficiency
tends towards a new, significantly reduced value.

The first two stages of initial primary billow development and three-dimensional
perturbation growth have mixing characteristics virtually identical to those of the
equivalent two-dimensional flow. Significant irreversible mixing occurs during, and
particularly immediately after, the roll-up of the primary billow core, with relatively
small amounts of associated dissipation. Thus this mixing is quite an efficient process,
with Ec ∼ 0.5. However, when the flow evolution of our three-dimensional simulations
deviates substantially from the two-dimensional flow evolution, the mixing efficiency
is significantly reduced.

When the flow is undergoing transition (i.e. td < t < t3dmax) in each case the cu-
mulative mixing efficiency decreases markedly. Subsequently to the three-dimensional
perturbations reaching maximum amplitude, when the flow is undergoing turbulent
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mark the characteristic times listed in figure 8.

decay (i.e. when t3dmax < t), it is clear that Ec is still decreasing in this final stage
of flow evolution, with a time variation which has changed qualitatively from that
observed during transition. It is also apparent that the oscillations (associated with
the re-development of statically unstable regions) in Ei observed in inherently two-
dimensional simulations (cf. figure 5) do not occur in three-dimensional flows to
anywhere near the same extent. This is due to the destruction of the primary billow
core at late times in three-dimensional flows.
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Since we wish to draw comparisons with experimental calculations of a mixing
efficiency within (forced) flows with significant levels of turbulence, it is perhaps more
appropriate to attempt to consider a mixing efficiency of the flow when it is inherently
three-dimensional. Furthermore, the dissipation within the flow during the KH billow
roll-up and the (initial) development of the three-dimensional motions is so small that
it is not really an appropriate analogue of the work done on a fluid by, for example,
a stirring rod (see e.g. Park et al. 1994). However, if the normalized dissipation rate
D has increased significantly after transition there is a plausible analogy between the
work done by a stirring rod (causing small-scale motions which both mix the fluid
and also suffer enhanced dissipation) and the energy lost by the total flow to mixing
and dissipation. Therefore, we define a post-transition (cumulative) mixing efficiency
as

Etc(t− t3dmax) ≡

∫ t

t3dmax

M(u) du∫ t

t3dmax

M(u) du−
∫ t

t3dmax

D(u) du

, (5.1)

which essentially isolates the efficiency of the mixing during the fourth and final stage
of the flow evolution when t > t3dmax.

We plot this quantity in figure 10(a) against time for the three stratified calculations
during the final stage of three-dimensional perturbation decay. Ultimately, in a
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real flow the perturbations will decay, and the flow will return to laminar motion.
Since there is significantly enhanced dissipation (and to a lesser extent mixing)
during the post-transition phase of the flow evolution, the (total) cumulative mixing
efficiency Ec will be dominated by contributions from this phase, and so Ec ∼ Etc. The
post-transition cumulative mixing efficiency thus serves as a useful estimate for the
asymptotic value of the mixing efficiency. We choose the time t3dmax as a natural start
time for the calculation of the post-transition mixing efficiency in (5.1). Variation in the
start time naturally varies the numerical value of Etc somewhat, but not significantly
provided the start time is chosen a sufficiently long time after transition so that the
flow is dominated by small-scale disordered motions.

Using this method to filter out the contributions to mixing of the flow during
periods of approximately laminar motion, we see that the typical (cumulative) mixing
efficiency rates are of the order of 0.15, very much in line with the experimental
evidence (Thorpe 1973; Linden 1979). Furthermore, when mixing during periods of
intense, disordered motion is considered alone, there appears to be a non-monotinicity
in the calculated cumulative and instantaneous mixing efficiencies, the mixing within
the Ri(0) = 0.05 flow being the most efficient of the three flows which we have
considered. This flow is still susceptible to relatively intense transient mixing events,
whereas both the other stratified simulations are not. For the Ri(0) = 0.025 flow,
variations in the density field are small after transition so that the disordered motion
is unable to generate significant quantities of irreversible mixing, while the dissipation
within the flow is very large, and so the mixing efficiency is small. Conversely, for the
more strongly stratified Ri(0) = 0.1 flow, the ambient stratification suppresses mixing
strongly at the periphery of the mixing layer, where the disordered motions are also
less energetic.

Such non-monotonicity has been proposed on theoretical grounds (see Phillips 1972
and Posmentier 1977) to be the generic behaviour of mixing induced by small-scale
turbulent motions in a stratified fluid, and been widely studied both theoretically
(Barenblatt 1993; Balmforth et al. 1998) and experimentally (Linden 1979; Fernando
1991; Park et al. 1994). A particular aspect of flows with such non-monotonicity of
mixing efficiency is that they are expected to become layered, with relatively weakly
stratified layers of well-mixed fluid being separated by thin regions of high density
gradient, a circumstance which is commonly encountered in nature, particularly in the
upper reaches of the ocean (see Phillips 1972; Woods 1968). Our calculations appear
to suggest that the mixing induced by the collapse of an unforced three-dimensional
shear layer has mixing efficiency (when appropriately defined) comparable to the
mixing efficiency found in forced flows. Furthermore, the dependence of the mixing
efficiency on Ri(0) appears to verify that shear-induced turbulent transition is a
plausible mechanism, of itself, for the creation of a layered density field. This is
particularly interesting, as the characteristics of the shear layer flow are qualitatively
different from the flows previously considered. In particular, there is not a strong
scale separation between the characteristic turbulence scales and the characteristic
scale of the density gradient in the shear layers we are considering.

To investigate whether the density field is actually becoming layered within the
stratified flows which we have considered, in figure 10(b–d), we plot the mean velocity
profile V̄ (z) (as defined in (2.8)), the mean density profile ρ̄(z) (as defined in (2.12)),
and the background density profile ρB(z) (as implicitly defined in (2.25)) at the last
time shown in figure 10(a), i.e. at t3dmax + 40. In each simulation the primary KH
billow has been completely destroyed. There is some slight variation between ρ̄ and
ρB implying somewhat stronger density gradients at the edges of the mixed regions
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within the flow. The depth of the mixed region within the flow decreases as Ri(0)
increases, but it is apparent that the characteristic scale over which the background
density field varies has increased to at least five shear layer half-depths. At this late
stage the primary billow cores are destroyed, and the characteristic scales of the fluid
motion are naturally significantly smaller (typically of the order of the shear layer
half-depth, as we show in the next section). Therefore, at this late stage of the flow
evolution, it appears that, consistently with the models discussed by Linden (1979),
the scales of turbulence are small compared with the regions of density gradient, and
thus the ultimate development of a layered density profile may possibly be expected.
The background velocity profiles are relatively smooth, and they all show a significant
deceleration due to dissipation.

The qualitative character of the density profiles is also different. For the flow with
Ri(0) = 0.025, the density distribution has become approximately linearly stratified
throughout much of the flow domain. At the instant shown, the small-scale motions
are still highly energetic, and it is reasonable to suppose that mixing will continue
for a significant time subsequently, leading to an essentially complete mixing of the
fluid density. Conversely, for the flow with Ri(0) = 0.1, the density stratification is
too strong for the small-scale motions to erode it completely, and thus the region
of the flow where mixing has taken place is still quite strongly stratified. However,
there is a vertical variation in the density gradient, with the middle of the flow (where
the small-scale motions have been most intense) more weakly stratified than other
regions of the flow. This effect is more pronounced in the intermediate flow (with
Ri(0) = 0.05) with a discernible well-mixed region developing in the central region,
bounded by two thinner regions of stronger density gradient. Therefore, shear-induced
three-dimensional mixing with intermediate stratification appears to lead to layering,
while smooth density distributions appear to develop in both more weakly and more
strongly stratified flows.

There is much greater variability throughout the entire flow evolution in the growth
rate σ3d of the inherently three-dimensional perturbation, as defined in (2.23), than
the growth rates of the total kinetic energy of the flow and the spanwise-averaged
perturbation kinetic energy, i.e. σ and σkh as defined in (2.20) and (4.4) respectively.
In figure 11, we plot σ3d and the various normalized contributions defined in (2.24)
against time for each of the four different flows which we have considered. Also
marked on the figure are the three special times defined in figure 8 which divide
the four different stages of flow evolution (vertical dotted lines) and the theoretically
predicted growth rates of three-dimensional perturbations (as in table 1) which we
calculated in § 4.

In all cases, the perturbations experience growth which is rapid compared both
to the rate of change of the two-dimensional perturbation field, and also the total
flow, immediately upon saturation of the primary KH billow. This is an a posteriori
verification that the assumption on which the stability analysis of § 4 was based
is valid (i.e. a separation of timescales between the growth of three-dimensional
perturbations and the timescale of variability of the two-dimensional flow). The
continuous amplification of the three-dimensional perturbation (which remains highly
organized) during this second stage of flow development strongly inhibits the onset
of a tertiary instability since, in the absence of saturation, no timescale separation
is possible. Significant dissipation accompanying the onset of small-scale disordered
motion appears to occur during this period of strong three-dimensional perturbation
growth.

The growth rates σ3d exhibit significant oscillations in phase with the oscillations
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Figure 11. Time variation of σ3d (defined in (2.23)) (solid thick line), D̂3d (solid thin), Ĥ3d (dashed),
ˆSHB3d (bold dotted), ˆSHKH3d (dotted), ˆST3d (dot-dashed) (all defined in (2.24)), in inherently

three-dimensional simulations with (a) Ri(0) = 0; (b) 0.025; (c) 0.05; (d) 0.1. Horizontal dashed lines
mark the theoretical predictions listed in table 1.

of the background shear, indicative of reversible energy exchange between the back-
ground mean flow and the two-dimensional KH component of the flow. In all cases,
periods of most rapid growth of the three-dimensional perturbations are associated
with local temporal maxima in the background shear. Indeed, transition appears to
occur immediately following one of these local maxima in growth rate, which occurs
at the time tf listed in figure 8.

For the unstratified flow in three dimensions, the dominant growth mechanism
is through shear extraction from the background flow. For the flow with Ri(0) =
0.025, the shear contribution SHB3d is still dominant, but at the moment of initial
instability onset, there is a small positive contribution from the buoyancy flux term
H3d. This transient peak is a signal of the exchange of some of the available potential
energy PA (stored in the statically unstable regions within the primary KH billow)
back into kinetic energy of the total flow. The increase in kinetic energy is associated
with a convective overturning which leads to some mixing, and hence an irreversible
increase in PB , and it is this overturning motion which inevitably drives a three-
dimensional perturbation. Once nucleated, this perturbation is then amplified further
by the background flow. These post-saturation overturning and mixing events become
increasingly significant as the Richardson number increases. For both of the more
strongly stratified simulations, the initial growth of three-dimensional perturbations
is dominated by a positive buoyancy flux contribution. Once the statically unstable
regions have been eroded by both reversible and irreversible motions, the dominant
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driving mechanism of the three-dimensional motions is through shear extraction
SHB3d from the mean shear.

Another effect of this initial intense buoyancy flux contribution is that the first
local maximum in σ3d varies non-monotonically with ambient stratification. Since this
is a measure of the initial growth rate of very small three-dimensional disturbances,
we consider this to be the appropriate analogue for the theoretically predicted growth
rate of periodic small-amplitude perturbations which we calculated in § 4 (see table
1). The theoretical predictions in table 1 consistently overestimate the numerically
inferred growth rate of the perturbations, due at least partly to the fact that the
initial perturbations within our numerical simulations have not been tuned to the
appropriate theoretical structures predicted in § 4.

This certainly seems to be the dominant effect for the unstratified and more weakly
stratified simulations, in which the theoretically predicted growth rates overestimate
the numerical observations by 10–15%. The behaviour of the two more strongly
stratified simulations is qualitatively different, where the mismatch between observed
and theoretically calculated growth rates is more severe, being of the order of 35%
to 45%. The theoretical predictions are based on the assumption that the statically
unstable regions at the periphery of the primary billow core are steady structures
which do not evolve with time, which is clearly not the case. The initial convective
overturning which triggers the onset of the three-dimensional perturbations also
eliminates the dominant driving mechanism for these two simulations. Nevertheless,
our numerical results remain qualitatively consistent with the theoretical predictions
not only with regard to growth rate, but also concerning the variation of the relative
significance of the various contributions (SHB3d,H3d etc) with ambient stratification.

In figure 12, we plot σ3d against time for each of the four simulations, with the
different lines representing the parts of the relevant growth rate or contribution which
are due to fluid motions in each of the four regions of interest (i.e. the ‘core’ region,
the ‘eyelid’ region, the ‘braid’ region, and the remainder of the flow, as shown in
figure 1). As usual, the vertical dotted lines denote the significant times shown in
figure 8. The three regions of core, eyelid and braid contain virtually all of the fluid
motions which are significant to three-dimensional perturbation growth. Considering
the unstratified flow, this subdivision also enables us to determine conclusively the
relative importance of core and braid-centred perturbations for the development of
intense three-dimensional motions within the flow. From consideration of the plot
of the subdivision of the growth rate σ3d (figure 12a) the core region (dotted line)
can be seen to be a region of very weak growth of three-dimensional perturbation
throughout flow evolution. Substantial growth is predicted both in the braid, and in
the eyelid region, though growth in the braid (solid thin line) appears to onset first,
suggesting that perturbation growth in the braid region induces growth around the
periphery of the primary billow core subsequently.

The three-dimensional motions are being driven in the braid region at all times
in the flow evolution. This is entirely consistent with our theoretical prediction that,
for an unstratified flow, the dominant mode of three-dimensional instability is the
hyperbolic braid-centred instability first predicted in KP91. The onset of signifi-
cant dissipation (an indicator of small-scale, disordered motion within the flow)
occurs at a time when there is a final, very strong, and actually globally maximum
peak in the growth rate of three-dimensional motions at the time tf shown on
figure 8, growth which is being driven almost exclusively by the shearing contribu-
tion from the background flow SHB3d. It appears that small-scale motions onset
first within the braid region, and then spread throughout the flow, due to interac-
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Figure 12. Time variation of total σ3d (defined in (2.23)) (solid thick line) and the component
associated with motions in the: braid region (solid thin); ‘eyelid’ region (dashed); core region (dot-
ted), and the residual region (as defined in figure 1) (dot-dashed), for inherently three-dimensional
simulations with (a) Ri(0) = 0; (b) 0.025; (c) 0.05; (d) 0.1.

tions between three-dimensional structures which initially develop in neighbouring
braids.

The development of the weakly stratified flow with Ri(0) = 0.025 is similar in
many respects to the development of the unstratified flow. Motions within the core
(dotted lines) are largely insignificant in the flow evolution. By far the most significant
growth mechanism is the shearing contribution from the braid region (thin solid lines).
Transition onsets in the braid region, after a final, strong, globally maximum peak in
the growth rate driven by a powerful shearing contribution. There is also significant
growth in the ‘eyelid’ region (dashed lines) of the flow. There are also some differences,
in particular the fact that the growth in the ‘eyelid’ region is briefly stronger than the
growth in the braid region. This is caused by the buoyancy flux contributionH3d (see
figure 11b, dashed line) taking its only significant values right at the very beginning
of flow development, and being initially concentrated in the eyelid.

As the ambient stratification is increased, the initial significance of H3d in three-
dimensional perturbation development increases markedly. In both of the more
strongly stratified simulations, the buoyancy flux is the dominant initial contribution
to the growth of three-dimensional perturbations. The first, and strongest, effect of
the buoyancy flux contribution is felt in the eyelid region around the periphery of the
primary KH billow core (dashed line), followed soon after by a contribution from the
braid region (thin solid line). The further development of the perturbation is largely
due to the shearing contribution SHB3d, with both the eyelid region and the braid
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region playing significant roles. There is once again a strong signal (at time tf) of
shearing contribution in the braid region immediately prior to the onset of disordered
motion with high dissipation rates. The initial stages of the development of three-
dimensional perturbations in these direct numerical calculations for the more strongly
stratified flows are also consistent with the predictions of the stability analyses of § 4.
The perturbations are located initially in the eyelid region, and the buoyancy flux
contribution is crucial to their initiation.

6. Spatial structure of three-dimensional motions
6.1. Spanwise-averaged three-dimensional perturbation structure

In figure 13, we plot the normalized spatial distribution of the spanwise average of
the average three-dimensional perturbation kinetic energy at the time tf (given in
figure 8) K̄3d(y, z, tf), defined as

K̄3d(y, z, tf) =

〈
u2

3d + v2
3d + w2

3d

〉
x

2K3d(tf)
. (6.1)

The spatially varying quantity K̄3d is clearly the numerically simulated analogue of
K3d defined in (4.7) associated with a single secondary instability of the form given in
(4.1). The qualitative similarity in the appearance of these figures and the theoretical
predictions presented in § 4 (i.e. figure 7) is quite striking, particularly when it is re-
membered that figure 13 shows integrated representations of all the three-dimensional
perturbations within the flow at a certain time, while figure 7 merely represents the
eigenstructure of a single, monochromatic mode. In the unstratified simulation, the
perturbation from early times is dominated by a braid-centred structure, which has
developed in the hyperbolic region of the flow. At earlier times there is some evi-
dence of a core-centred perturbation (highly similar to the low-wavenumber mode
illustrated in figure 7(a) with a thick solid line) but there appears to be no commu-
nication between the braid-centred perturbation and the interior of the KH billow
core, or indeed between neighbouring billows.

As has been the case with all the analyses which we have conducted, the behaviour
of the flow with Ri(0) = 0.025 (figure 13b) has points of correspondence with both
the stratified and unstratified flows. Initially, there is significant intensity in the braid
region, but also a distinct double maximum in the perturbation kinetic energy at the
leading edge below the primary billow core, and at the trailing edge above the primary
billow core, exactly in the statically unstable regions induced by the roll-up of the
primary KH billow. By the time tf shown in the figure, the effect of background shear
is to advect the three-dimensional perturbation into the braid region of the flow.

For the two more strongly stratified simulations, (i.e. figures 13c and 13d) we see that
the major qualitative features of the predicted structure for the secondary instability
are replicated in our simulations. The dominant contributions to the development of
the three-dimensional perturbations in both flows are located around the periphery
of the primary vortex core, with very little contribution from either the braid region
or the interior of the primary billow core. There are clearly discernible peaks in K̄3d

for each of these simulations in the regions where the statically unstable convective
regions have been induced, and furthermore, where the calculations of § 4 predict that
the three-dimensional perturbations will be most intense.

We also find that although the initial mechanism and nucleation sites for the
development of three-dimensional motions within shear layers strongly depend on the
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Figure 13. Spatial distribution of K̄3d (defined in (6.1)) at the time tf for inherently
three-dimensional flows with (a) Ri(0) = 0; (b) 0.025; (c) 0.05; (d) 0.1.

ambient stratification, the mechanisms of nonlinear amplification of these structures
and their ultimate destruction (thus precipitating the onset of transition) have certain
aspects in common, irrespective of the ambient stratification. The braid region is
the primary location for subsequent perturbation amplification. For the unstratified
and most weakly stratified simulation (Ri(0) = 0.025) this is unsurprising, since the
perturbation has initially developed in the braid, and so the perturbation extracts
significant amounts of energy from the background flow via the shearing contribution
SHB3d and continues to amplify in its original region of development. The coherence
of the primary billow core is quite remarkable, with the significant development of
perturbations within the primary billow core being induced only when the three-
dimensional perturbations become quite intense. This coherence of the primary billow
core also implies that it is evolving rather similarly to the fashion in which it evolves
when the flow is restricted to two dimensions, in particular that it is nutating
and oscillating. This oscillation periodically intensifies the growth rate (and driving
mechanism) of the three-dimensional perturbation at times when the background
shear is most intense. Furthermore, as the primary billow rotates (in our figures always
in a clockwise direction), the billow has the effect of further intensifying the three-
dimensional perturbation structures by stretching and sweeping the perturbation over
and under a primary billow core and towards a neighbouring braid. This injection and
communication from one braid region to its neighbour is a fundamentally nonlinear
process, which plays a significant role only subsequently to the appearance and
development of the secondary instability.

Ultimately the perturbation reaches a critical amplitude. At the time tf shown in the
figures, there occurs a last local temporal maximum in background shear and hence
σ3d. At this instant, the process of injection of the perturbation from a neighbouring
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braid region is so intense that small-scale motions rapidly develop, and then propagate
throughout the flow field, with an attendant rapid increase in dissipation.

There is an analogous development of the flow in the more strongly stratified
simulations. The perturbations have nucleated around the periphery of the primary
billow core, principally at the trailing edge a little above the core, and also at the
leading edge slightly below the core. Periodically with the oscillations of the primary
billow core, these perturbations intensify and migrate towards the centre of the braid,
as is indicated by the dominance of the shearing contribution from the braid region
on their subsequent development. This migration of the perturbation towards the
braid region oscillates in phase with the oscillation of the primary KH billow, until
ultimately critical amplitude is reached around time tf shown in the figure, and the
two perturbations from neighbouring billows meet near the centre of the braid region
(soon after the times tf). This collision at finite amplitude triggers a rapid increase in
dissipation and transition.

6.2. Three-dimensional visualizations

The streamwise vorticity is a highly appropriate field to consider if we wish to
visualize the development of three-dimensional perturbations within a flow as it is in-
herently three-dimensional and the predicted secondary instabilities are characterized
by spanwise-periodic streamwise vortices. In figures 14 and 15, we show isosurfaces of
positive and negative streamwise vorticity at three different times. The times selected
are during the second stage of flow development, when the three-dimensional pertur-
bations are growing, essentially through energy extraction from the background flow.
For ease of comparison between different simulations, the chosen times are defined
for each of the flows which we are considering in terms of the differing values of the
ratio RK, defined as

RK ≡K3d/Kkh. (6.2)

The three values RK = 3.3× 10−4, 1.0× 10−2, and 3.0× 10−2, are chosen to illustrate
the development of three-dimensional perturbations within the second stage of the
life cycle of the shear layer. We also show an isosurface of spanwise vorticity, which
defines the extent of the ‘core’ region. We have varied the level of the vorticity
isosurface between the different frames at different times so that it is possible to
observe the underlying structure of the streamwise vortex tubes, which are amplifying
significantly with time.

The three-dimensional structures which develop within shear layers may be thought
of as streamwise vortex tubes. In the unstratified calculation, the tubes develop in
the braid, while, as the stratification increases, the convectively unstable region at the
trailing edge above the core and at the leading edge below the core become increasingly
significant, with the most weakly stratified simulation exhibiting essentially hybrid
behaviour. What is particularly striking about these figures is the high level of
periodicity within the streamwise vorticity field in our calculations, which were forced
in three dimensions purely with broadband white noise. Furthermore, the wavelength
of the perturbations does not change noticeably with time within any one of the
simulations, with no direct evidence of ‘collapse’ into isolated vortices, consistently
with our theoretical predictions. Indeed, as Ri(0) increases, there does seem to be a
trend to smaller wavelength, as predicted in § 4.

The subcritical interaction between perturbations on neighbouring billows can be
seen to be intimately related to a collision between the spanwise periodic array of
streamwise-aligned vortex tubes. In the unstratified flow, a vortex tube (the finite-
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Figure 14. Isosurfaces of spanwise vorticity (green) with ωx = −0.7 and various isosurfaces of
streamwise vorticity ωy (positive blue and negative red) within an unstratified flow (left column)
and a flow with Ri(0) = 0.025 (right column) at three different times as shown on the figure, defined
in terms of the prevailing value of RK (as defined in (6.2)): (a) RK = 3.3 × 10−4, |ωy | = 0.02; (b)
RK = 1.0× 10−2, |ωy | = 0.1; (c) RK = 3.0× 10−2, |ωy | = 0.1.

amplitude manifestation of the hyperbolic instability) is intensified within the braid,
and then starts to wrap around the primary KH billow core. It then passes into
the flow field of the neighbouring braid, and is in turn intensified by the strain field
associated with the neighbouring braid region. However, within this braid region,
there is typically another, independently developing streamwise-aligned vortex tube.
It is an interaction between these two neighbouring streamwise vortices which triggers
the transition to turbulence.

At the early stages of the development of the three-dimensional motions, the
intensity of the streamwise-aligned vortex tubes is relatively weak, and so the two
neighbouring tubes do not interact particularly vigorously. When a weak streamwise
vortex tube is swept round the primary KH billow into the vicinity of the neighbouring
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Figure 15. As figure 14 but with Ri(0) = 0.05 (left column) and Ri(0) = 0.1 (right column).

stagnation point, the flow field induced by the streamwise vortex tube which is actually
developing at that stagnation point acts to deflect the approaching streamwise vortex
tube away from the stagnation point. The incoming streamwise vortex tube is thus
deflected onwards to the next primary KH billow core further downstream, where
once again it continues to be amplified. This amplification is a continual process,
principally driven by energy extraction from the background mean flow. The periodic
exchange of energy between the mean flow, and the flow field associated with the
primary KH billow core modulates the growth rate of the three-dimensional motions
(cf. figure 11).

The background flow amplifies the streamwise-aligned vortex tubes until they attain
a critical amplitude. This final surge in the growth in intensity of the streamwise
vortex tube leads to a climactic interaction in the vicinity of the braid stagnation
point. At this stage of the flow evolution, the streamwise vortex tube which is
being swept inwards towards the stagnation point is sufficiently intense to break the
local streamwise vortex tube which is continually being stretched at that particular
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stagnation point. This finite-amplitude vortex–vortex interaction rapidly introduces
small-scale, three-dimensional motions throughout the flow, and signifies the onset of
disordered, turbulent motion.

The general structure of the transition to turbulence in a stratified flow is analogous
to the unstratified flow. Transition appears to be mediated by intense, vortex–vortex
interactions between the secondary streamwise-aligned vortex tubes, localized in the
braid region of the flow. As can be seen clearly in figure 15, the streamwise vortices
(in the various stratified flows which we have considered) develop initially around the
periphery of the primary KH billow, at greatest amplitude below and slightly towards
the leading edge of the billow core, and above and slightly towards the trailing edge
of the billow core. Though initially triggered by convective overturnings within the
statically unstable regions which develop around the periphery of the primary billow
core, the careful analysis of the energetics of the flow which we presented in § 5
demonstrates that the subsequent development of three-dimensional motions to finite
amplitude is due principally to shear extraction from the background flow.

The amplification of the three-dimensional motions by the background shear cor-
responds to a stretching of the secondary streamwise-aligned vortex tubes as can
be seen in figure 15. The background shear causes these secondary vortex tubes to
be stretched (and thus intensified) away from their initial nucleation sites around
the periphery of the primary KH billow core. This stretching process advects the
vortex tubes towards the braid region, and leads to the transient development of
three-dimensional perturbations in the braid region.

Indeed, due to the particular structure of the flow field in the braid region, this
stretching also causes the secondary streamwise-aligned vortex tubes, which have
initially nucleated on neighbouring primary billow cores, to converge on the stagnation
point at the middle of the braid region. Since there exists an underlying oscillation
in the intensity of the background shear, this stretching process oscillates in intensity
during growth of the three-dimensional motions.

As the three-dimensional motions develop, the background shear flow continues to
stretch the streamwise vortex tubes (which originate from neighbouring primary KH
billow cores) closer and closer towards the midpoint of the braid region. Eventually,
at the time tf when the background flow is most intense, the two neighbouring
arrays of secondary streamwise-aligned vortex tubes are stretched sufficiently so that
they collide near the middle of the braid region, as can be seen clearly in figure
15. Intense small-scale motions are induced within the flow as the colliding finite-
amplitude streamwise vortex tubes (initially developed in the vicinity of neighbouring
primary billow cores) interact. As they collide in the braid region, approaching each
other in the streamwise direction, vigorous vortex reconnection processes occur which
are inherently finite amplitude and subcritical. In all our simulations, there is little
evidence of neighbouring streamwise vortices interacting strongly in the spanwise
direction, and therefore, within the flows which we have considered, there appears
to be no evidence of a tertiary instability of neighbouring counter-rotating vortex
pairs, such as the so-called Crow instability (Crow 1970) or co-operative elliptical
instabilities (see e.g. Leweke & Williamson 1998). It is important to appreciate that
the flows which we have considered appear to undergo the transition to turbulence
through a finite amplitude interaction of evolving secondary vortical structures which
reconnect predominantly in the streamwise direction.

Such vortex reconnection is a possible explanation for the observation of tubes
within tilted tank experiments (see Thorpe 1987 for a fuller discussion). Vortex tubes
in the braid may develop from the three-dimensional perturbations initially localized
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in the periphery of the primary vortex core. They are highly amplified compared to
the initial instability structures, and may be experimentally observable, even if those
shown in the frames of figure 15 are not. Due to the spanwise periodicity enforced by
our chosen boundary conditions, and the two-dimensional form of our unstable mode
initial perturbation, the initial primary billow cores are perfectly two-dimensional, and
so there is initially no streamwise vorticity in the braid region. Nevertheless we do
observe intense streamwise-aligned vortical structures in the braid region. In a less-
constrained flow, if there is any element of non-parallel alignment in the primary
billow cores (as experimentally observed by Thorpe 1987 and Caulfield et al. 1996,
and deliberately induced by Atsavapranee & Gharib 1997) this will inevitably lead
to streamwise vorticity being initially resident in the braid regions. The strain field in
the braid region will naturally enhance this vorticity markedly, and thus contribute
another, different mechanism for streamwise vortical development in the braid region,
which is distinct from that considered in this paper, and theoretically predicted in § 4.

6.3. Spectral representation

It is sensible to attempt to compare quantitatively the spatial periodicity of the
three-dimensional motions (clearly evident in figures 14 and 15) and the theoretical
predictions of § 4. At each time step, we used fast Fourier transforms (in the spanwise
direction) to obtain a discretized (spanwise) spectral representation of the streamwise
vorticity field ωy = ∂u/∂z − ∂w/∂x. This representation took the form

ωy(x, y, z, t) =

N∑
n=−N

cn(γn, y, z, t)e
iγnx. (6.3)

The cn(γn, y, z, t) are the (complex) Fourier coefficients

cn(γn, y, z, t) = 〈ωye−iγnx〉x, (6.4)

and the γn are a discrete set of spanwise wavenumbers γn = nγ1, where γ1 = 2π/Lx. For
our calculations, the appropriate value of N was 64. Of natural interest is the relative
importance of the various spectral components as represented by the normalized
spanwise power spectrum density P (γn) (for non-negative n) defined as

P (γn, t) ≡ 〈|c(γn, y, z, t)|2〉yz
N∑
n=0

〈|c(γn, y, z, t)|2〉yz
. (6.5)

We also compartmentalize the power spectrum density into parts associated with the
billow core, ‘eyelid’ and braid, subdividing the flow in the same manner as was used
for our energetics calculations, and as illustrated in figure 1.

In figure 16, we plot the (normalized) power spectrum density P (γn, t) against γn
at the time tf (the same as used in figure 13) for each of the simulations which we
are considering. In each plot, the various lines show the components of the power
spectrum associated with motions in the different parts of the flow defined in figure 1.

For all the flows, the power spectrum has a strong peak at time tf , which has
developed from the initially broadband noise. When the flow is unstratified, for all
times the peak appears to be concentrated in the braid region (thin solid line).
Also significant is the ‘eyelid’ region around the periphery of the primary billow
core (dashed line). Once again, the core region plays an insignificant role in the
flow development. Since the flow was initially forced with a broadband spectrum of
three-dimensional perturbations, it would appear that the most unstable perturbation
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Figure 16. Variation of the various components (i.e. total (thick solid line), braid (thin solid), ‘eyelid’

(dashed), core (dotted) and remainder (dot-dashed) as defined in figure 1) of P̂ (γn, t) (defined by
(6.5)) against γn at the time tf as defined in figure 8, for inherently three-dimensional flows with
Ri(0) =: (a) 0; (b) 0.025; (c) 0.05; (d) 0.1. The wavenumber of the most unstable mode predicted in
§ 4 is denoted by a thick dotted line.

structure is dominating the later time development of the flow. This perturbation
appears to be localized in the braid region of the flow.

The ‘eyelid’ region (plotted with a dashed line) around the periphery of the pri-
mary billow core becomes increasingly significant as the initial level of stratification
is increased (figure 16b–d). When the flow is stratified, the precise timing of the
development of the dominant peak in the power spectrum of the streamwise vorticity
field appears to be directly after the initial peak in the buoyancy flux H3d, further
support for our belief that the dominant secondary three-dimensional motions within
the shear layer are initiated by a three-dimensional convective instability, localized
around the periphery of the primary billow core, as theoretically discussed in § 4.
As three-dimensional motions develop within the flow, the power in the streamwise
vorticity field localized in the braid region increases markedly (thin solid line), until
at time tf it typically is as significant as the eyelid region.

Importantly, until transition, it is possible to establish that there is a measurable
continued reduction in the relative importance of higher wavenumber disturbances.
From this evidence, it is reasonable to draw two inferences about the spatial periodicity
of the streamwise vorticity field. First, as observed qualitatively by consideration of
figures 14 and 15, the streamwise vorticity field organizes into a highly periodic
array of streamwise-aligned vortices, whose characteristic periodicity does not vary
appreciably with time. Secondly, these streamwise-aligned vortices do not appear to
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collapse into highly isolated structures, as such a collapse would be associated with
an increase in the relative significance of the higher wavenumber components of the
flow field.

As the various flows further develop, the structure of the power spectrum of the
streamwise vorticity field does not vary appreciably, although, due to the continual
intensification of the three-dimensional motions, the total power in the streamwise
vorticity field increases by several orders of magnitude. However, in each case, there
is a quite abrupt change in the power spectrum immediately subsequent to the
transition time td, the peak associated with the secondary streamwise vortices being
rapidly eroded subsequently. A smooth power spectrum indicating a continual cascade
to smaller scales develops.

In each of the figures we have marked the predicted value (from § 4) of the most
unstable spanwise wavenumber for each of the particular flows with a thick vertical
dotted line. The power spectra for the various flows show excellent quantitative
agreement with the theoretical predictions, for all except the most strongly stratified
simulation (with Ri(0) = 0.1, as plotted in figure 16(d), where the theoretical prediction
is somewhat too large). As Ri(0) is increased, the wavenumber associated with the
peak in the power spectrum increases, in accord with our theoretical predictions.

7. Conclusions
We have analysed in detail four fully three-dimensional simulations of shear flows,

with varying initial stratification. We have found that the life-cycle of a shear flow,
from its initial laminar state to transition, is intimately related to the initial growth,
development and ultimate breakdown of secondary, spanwise-periodic streamwise-
aligned vortices. These vortices appear once the primary KH billow has saturated, and
are naturally inherently three-dimensional. We have demonstrated, both qualitatively
and quantitatively, that these streamwise vortex streaks may be considered to be finite-
amplitude manifestations of secondary instabilities of the non-parallel flow induced
by the roll-up of the primary billow core.

When the flow is unstratified, we show that the braid region is itself susceptible
to a localized secondary instability, which we have referred to as a hyperbolic
instability. If the braid region is subject to a spanwise-periodic perturbation, such
a perturbation both naturally induces streamwise-aligned vorticity, and also is very
efficient at extracting energy for further growth from the background shear flow. The
appropriate perturbation takes the form of a translation of the braid region, thus
leading to efficient energy extraction through Reynolds stresses by the perturbation
from the background shear.

However, when the flow is stratified, the mechanisms of three-dimensionalization
are fundamentally different. In such stratified flows, due to baroclinic effects, the
vorticity of the braid is strongly intensified, thus modifying markedly the type of
perturbation which can develop in this region. Also, since this region is also a region
of intensified static stability, secondary vertical motions are strongly suppressed in
the braid in general, thus suppressing the very type of motions which appear to
be necessary for the development of the hyperbolic instability. The periphery of the
primary KH billow is a location where the fluid is locally statically unstable, as
the process of rolling up the spanwise vorticity has led to dense fluid being lifted up
above light fluid. This process of redistribution of the density field causes the potential
energy of the whole system to increase, but significantly, much of this increase in
potential energy remains available to drive secondary motions. We show that the flow
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is predicted to be linearly unstable to spanwise-periodic structures localized around
the periphery (i.e. the ‘eyelid’) of the primary billow core.

This instability manifests itself physically as streamwise-aligned vortical motions,
which are triggered by the release of the potential energy stored in the convectively
unstable regions of the flow. Some of this released potential energy causes a burst of
(irreversible) mixing around the periphery of the primary billow cores, which occurs
soon after the saturation of the primary instability. However, some of the potential
energy converts into kinetic energy, seeding a streamwise-aligned overturning, which
is rapidly amplified by the background shear to finite amplitude, in the form of
streamwise-aligned vortex tubes.

It is important to appreciate that the numerically observed spanwise wavenumbers
in our three-dimensional simulations are largely in quantitative agreement with the
theoretical calculations of § 4. The observed initial growth rates of the inherently three-
dimensional motions are sufficiently large that there is a demonstrable separation of
time scales between the evolution of the secondary perturbations and the spanwise-
averaged two-dimensional flow. This separation of time-scales justifies a posteriori the
underlying assumption of our analyses. In general, all the evidence of our studies
points to the view that the non-parallel flow induced by the primary KH billow is,
in a real sense, catalytic in the transition to turbulence, with the dominant growth
mechanism for three-dimensional motions being direct energy extraction from the
parallel, mean shear flow. During the three-dimensional simulations, the growth rate of
the kinetic energy associated with the inherently three-dimensional motions oscillates
strongly, with the maximum value being associated with periods of maximum ambient
shear.

Furthermore, during this nonlinear amplification process, the various characteristics
of the secondary perturbations do not vary significantly with time. In particular,
there is no quantitative evidence of collapse’ of the streamwise-aligned vortices into
highly isolated vortices. The vortices actually appear to remain highly periodic, and
essentially space-filling in the spanwise direction. Physically, the streamwise-aligned
vortices are periodically stretched. In an unstratified flow, the main effect of this
stretching is to advect a particular streamwise vortex towards the stagnation point at
the midpoint of a braid region of a neighbouring billow. Analogously, for a stratified
flow, stretching by the background shear causes the streamwise vortices (initially on
the periphery of the primary billow core) to be advected towards the stagnation point
at the midpoint of the braid region between neighbouring billows. In the stratified
flows which we have considered, the density field appears to play no significant
dynamic role during this phase of flow development. Also, during the intensification
of the streamwise vortices, there is little mixing and an irreversible increase in the
potential energy of the entire flow.

Ultimately, this intensification of the streamwise vortices leads to the onset of small-
scale, disordered motion within the flow. The streamwise vortices become so intense
that they interact subcritically with each other. This interaction takes the form of a
streamwise-aligned collision in the vicinity of the stagnation point at the midpoint of
the braid region. Though the particular route of approach to this collision varies with
the ambient stratification (and hence the initial localization of the streamwise-aligned
vortices) the onset of small-scale motions occurs first in the vicinity of the midpoint
of the braid region.

These small-scale motions rapidly spread outwards from this point, as the stream-
wise-aligned vortices break down, destroying the primary billow core in the process.
In general, there is a dramatic increase in the dissipation within the flow, over a
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relatively short timescale. In the case of the stratified flows which we considered,
this proliferation of inherently three-dimensional, small-scale motions also leads to a
marked increase in the irreversible mixing within the flow. The spatial distribution
of these small-scale motions is affected strongly by the ambient stratification. When
the flow is unstratified the small-scale motions spread throughout the entirety of the
flow domain, and the background shear profile is completely disrupted. When the
flow is stratified, the large-scale stabilizing effects of the ambient density distribution
causes the small-scale motions to be concentrated over a vertical extent of the order
of the primary KH billow. Our observations suggest that the flow above and below
the extent initially occupied by the primary KH billow remains essentially laminar.

Within the region of small-scale motion, though the appropriate Reynolds number
within the flow is too small for the turbulence to become fully developed, the flow
is eventually dominated by small-scale, slowly decaying, intense three-dimensional
disordered motions. In the stratified flows, we observed intense, irreversible mixing
occurring as the underlying disordered motions decayed. We have carefully analysed
this mixing process, using the formalism proposed by Winters et al. (1995). By
considering the developing background density distributions, we observed a non-
monotonic dependence of an appropriate measure of the mixing efficiency on the
initial ambient stratification.

Whatever the particular cause of and characteristics of the turbulent disordered
motion, non-monotonic mixing efficiency as a function of ambient stratification
implies the ultimate development of a layered density profile (Phillips 1972; Posmentier
1977; Linden 1979). Our analyses suggest that the small-scale motions induced by the
development, intensification and ultimate breakdown of secondary, spanwise-periodic,
streamwise-aligned vortices within a stratified shear flow drive mixing processes with
this very non-monotonic mixing efficiency, at least over some (extended) period of time
of flow evolution. Therefore, the mixing induced by flow breakdown within a stratified
shear flow leads inevitably to a layered density profile. Indeed, the development of
such layered profiles should be thought of as a generic final structure for turbulent
mixing within stratified flows, irrespective of the particular characteristics of the
three-dimensional mixing processes. Although we have not continued our simulations
of the flows until the disordered motions decayed and the flows fully relaminarized,
and thus could not verify the result directly, the evidence of the relatively early-time
evolution of the mixing within the disordered flow is consistent with the ultimate
development of a layered density profile (see figure 10).

To draw general conclusions from our study, the effects of the periodic boundary
conditions in the spanwise and streamwise directions need to be carefully considered.
In the spanwise direction, it is clear from figures 14 and 15 that the domain is
sufficiently wide to allow the development of several streamwise-aligned vortices, and
several different spanwise periodicities can be accommodated within the finite domain
width. Also, the domain is sufficiently wide to accommodate elliptical instabilities of
typical, theoretically predicted wavenumber, although our studies confirm that such
instabilities play an insignificant role. Actually, the imposition of spanwise periodicity
is of greater significance earlier in the flow evolution, as the periodicity encourages
the development of a perfectly two-dimensional primary billow core. Though, from
the experimental evidence, such a two-dimensional billow is often observed, the initial
instability of a real shear flow can also often be inherently three-dimensional. The
primary array of billows may not all be precisely perpendicular to the background
flow, and the billows which develop may be of a finite horizontal extent, with complex
patterns of defects and vortex reconnections (see Browand & Prost-Domasky 1990).
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It is important to consider the effect of the imposition of periodicity in the
streamwise direction, which essentially restricts our investigations to the evolution of
the local flow around a single billow. Through our study, we have found that intense
mixing may onset exclusively due to local motions induced in the vicinity of a primary
KH billow, where the secondary, quasi-two-dimensional vortex merging instability
has been artificially suppressed due to the imposition of streamwise periodicity,
on the typical length scale of one KH billow. To demonstrate that the behaviour
of the flows which we have considered is relevant to the development of flows
with significantly greater streamwise extent, it is necessary to relax somewhat the
imposition of periodicity in the streamwise direction. A natural extension is to define
the streamwise extent of the flow so that two KH billows are able to develop within
the computational domain. In such a flow, there is now a competition between two
different routes to significant mixing, as considered in some detail in the context
of unstratified flows by Rogers & Moser (1992). Locally to each billow, the three-
dimensional instabilities which we have discussed in this paper grow simultaneously
with the development of a largely two-dimensional secondary subharmonic merging
instability. The exact route to intense mixing depends in a subtle manner on the initial
amplitude of the various perturbations.

Unless the subharmonic forcing is sufficiently large that neighbouring primary KH
billows merge relatively quickly, the three-dimensional perturbations develop, inten-
sify, and trigger transition without any significant interaction between the neighbour-
ing spanwise structures. As we have previously reported (Caulfield & Peltier 1994),
the three-dimensional development of a stratified shear layer within a streamwise-
periodic domain containing two primary KH billows can also exhibit the development
of intense, spanwise-periodic streamwise-aligned vortices, which trigger the transition
to turbulence. If the subharmonic forcing is sufficiently weak, we have found that
stratified (and also unstratified) flows become intensely disordered before any signifi-
cant interaction between the two primary billows takes place, thus confirming that, at
least under certain circumstances, it is appropriate to consider the development of a
flow consisting of a single KH billow as typical of the three-dimensional development
and ultimate breakdown of an initially parallel shear flow.

Secondary stability analysis of the primary KH billow is highly valuable in identify-
ing the characteristic secondary instabilities which develop. The secondary instability
which appears to dominate in an unstratified flow is, as originally discussed in KP91,
inherently localized in the hyperbolic, braid region of the flow, and though translative
in nature, does not appear to be related to the elliptical instability of the primary
billow core. Within stratified flows, the secondary instability spectrum is dominated
by a convective instability, as first hypothesized in Peltier et al. (1978) and analysed in
detail in KP85, that is localized in the statically unstable regions around the periphery
of the primary billow core.

At finite amplitude, both types of instability take the form of streamwise-aligned
vortices. These vortices grow inexorably through direct energy transfer from the mean
flow. They do not, in the conventional sense, appear to undergo a tertiary instability,
as within the flows which we studied the amplitude of the secondary, inherently three-
dimensional motions never appeared to saturate until after the onset of small-scale
disordered motions. Rather, flow breakdown is induced by a catastrophic subcritical
interaction of streamwise-aligned vortices which have initially nucleated in the vicinity
of neighbouring KH billow cores, which leads rapidly to highly disordered motions.

The ultimate interest in our study of stratified flows is the (irreversible) mixing
induced by the disordered motions arising from the breakdown of the various primary
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and secondary instabilities inherent in a temporally evolving stratified shear flow.
From a quantitative analysis of the mixing efficiencies of such flows, the evidence
appears to point to the inevitable development of layered density distributions, after
the turbulence has decayed. Therefore, we conjecture that shear layer transition, in
and of itself, is a possible mechanism for the development of multiple layers of
different density within an initially essentially two-layer fluid. We will investigate the
late-time development of such shear layers in a subsequent publication.
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Peltier, W. R., Hallé J. & Clark, T. L. 1978 The evolution of finite-amplitude Kelvin–Helmholtz
billows. Geophys. Astrophys. Fluid Dyn. 10, 53–87.

Phillips, O. M. 1972 Turbulence in a strongly stratified fluid is unstable? Deep-Sea Res. 19, 79–81.

Pierrehumbert, R. T. 1986 Universal short wave instability of two-dimensional eddies in an inviscid
fluid. Phys. Rev. Lett. 57, 2157–2159.

Pierrehumbert, R. T. & Widnall, S. E. 1982 The two- and three-dimensional instabilities of a
spatially periodic shear layer. J. Fluid Mech. 114, 59–82.

Posmentier, E. S. 1977 The generation of salinity fine structures by vertical diffusion. J. Phys.
Oceanogr. 7, 298–300.

Potylitsin, P. G. & Peltier, W. R. 1998 Stratification effects on the stability of columnar vortices
on the f-plane. J. Fluid Mech. 355, 45–79.

Rogers, M. M. & Moser, R. D. 1992 The three-dimensional evolution of a plane mixing layer: the
Kelvin–Helmholtz roll-up. J. Fluid Mech. 243, 183–226.

Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Commun. Math. Phys. 20, 167–169.

Salhi, A., Cambon, C. & Speziale, C. G. 1997 Linear stability analysis of plane quadratic flows in
a rotating frame with applications to modelling. Phys. Fluids 9, 2300–2309.

Schowalter, D. G., Van Atta, C. W. & Lasheras, J. C. 1994 A study of streamwise vortex structure
in a stratified shear layer. J. Fluid Mech. 281, 247–291.

Scinocca, J. F. 1995 The mixing of mass and momentum by Kelvin–Helmholtz billows. J. Atmos.
Sci. 52, 2509–2530.

Smyth, W. D., Klaassen, G. P. & Peltier, W. R. 1988 Finite amplitude Holmboe waves. Geophys.
Astrophys. Fluid Dyn. 43, 181–222.

Smyth, W. D. & Peltier, W. R. 1991 Instability and transition in finite amplitude Kelvin–Helmholtz
and Holmboe waves. J. Fluid Mech. 228, 387–415.

Smyth, W. D. & Peltier, W. R. 1994 Three-dimensionalization of barotropic vortices on the f-plane.
J. Fluid Mech. 265, 25–64.

Staquet, C. 1995 Two-dimensional secondary instabilities in a strongly stratified shear layer. J.
Fluid Mech. 296, 73–126.

Swinney, H. L. & Gollub, J. P. 1981 Hydrodynamic Instabilities and the Transition to Turbulence.
Springer.

Thorpe, S. A. 1973 Experiments on instability and turbulence in stratified shear flow. J. Fluid Mech.
61, 731–751.

Thorpe, S. A. 1985 Laboratory observations of secondary structures in Kelvin–Helmholtz billows
and consequences for ocean mixing. Geophys. Astrophys. Fluid Dyn. 34, 175–199.

Thorpe, S. A. 1987 Transitional phenomena and the development of turbulence in stratified fluids:
A review. J. Geophys. Res. 92C, 5231–5248.

Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A 2, 76–80.

Winant, C. D. & Browand, F. K. 1974 Vortex pairing: The mechanism of turbulent mixing layer
growth at moderate Reynolds number. J. Fluid Mech. 63, 237–255.

Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and
mixing in density-stratified fluids. J. Fluid Mech. 289, 115–128.

Woods, J. D. 1968 Wave-induced shear instability in the summer thermocline. J. Fluid Mech. 32,
791–800.


